Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Analysis/CFLAliasAnalysis.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | afa8332a0e37 |
children |
line wrap: on
line source
//===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a CFL-based context-insensitive alias analysis // algorithm. It does not depend on types. The algorithm is a mixture of the one // described in "Demand-driven alias analysis for C" by Xin Zheng and Radu // Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to // Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the // papers, we build a graph of the uses of a variable, where each node is a // memory location, and each edge is an action that happened on that memory // location. The "actions" can be one of Dereference, Reference, or Assign. // // Two variables are considered as aliasing iff you can reach one value's node // from the other value's node and the language formed by concatenating all of // the edge labels (actions) conforms to a context-free grammar. // // Because this algorithm requires a graph search on each query, we execute the // algorithm outlined in "Fast algorithms..." (mentioned above) // in order to transform the graph into sets of variables that may alias in // ~nlogn time (n = number of variables.), which makes queries take constant // time. //===----------------------------------------------------------------------===// #include "llvm/Analysis/CFLAliasAnalysis.h" #include "StratifiedSets.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/Instructions.h" #include "llvm/Pass.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <memory> #include <tuple> using namespace llvm; #define DEBUG_TYPE "cfl-aa" CFLAAResult::CFLAAResult(const TargetLibraryInfo &TLI) : AAResultBase(TLI) {} CFLAAResult::CFLAAResult(CFLAAResult &&Arg) : AAResultBase(std::move(Arg)) {} // \brief Information we have about a function and would like to keep around struct CFLAAResult::FunctionInfo { StratifiedSets<Value *> Sets; // Lots of functions have < 4 returns. Adjust as necessary. SmallVector<Value *, 4> ReturnedValues; FunctionInfo(StratifiedSets<Value *> &&S, SmallVector<Value *, 4> &&RV) : Sets(std::move(S)), ReturnedValues(std::move(RV)) {} }; // Try to go from a Value* to a Function*. Never returns nullptr. static Optional<Function *> parentFunctionOfValue(Value *); // Returns possible functions called by the Inst* into the given // SmallVectorImpl. Returns true if targets found, false otherwise. // This is templated because InvokeInst/CallInst give us the same // set of functions that we care about, and I don't like repeating // myself. template <typename Inst> static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &); // Some instructions need to have their users tracked. Instructions like // `add` require you to get the users of the Instruction* itself, other // instructions like `store` require you to get the users of the first // operand. This function gets the "proper" value to track for each // type of instruction we support. static Optional<Value *> getTargetValue(Instruction *); // There are certain instructions (i.e. FenceInst, etc.) that we ignore. // This notes that we should ignore those. static bool hasUsefulEdges(Instruction *); const StratifiedIndex StratifiedLink::SetSentinel = std::numeric_limits<StratifiedIndex>::max(); namespace { // StratifiedInfo Attribute things. typedef unsigned StratifiedAttr; LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs; LLVM_CONSTEXPR unsigned AttrAllIndex = 0; LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1; LLVM_CONSTEXPR unsigned AttrUnknownIndex = 2; LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 3; LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex; LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex; LLVM_CONSTEXPR StratifiedAttr AttrNone = 0; LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex; LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone; // \brief StratifiedSets call for knowledge of "direction", so this is how we // represent that locally. enum class Level { Same, Above, Below }; // \brief Edges can be one of four "weights" -- each weight must have an inverse // weight (Assign has Assign; Reference has Dereference). enum class EdgeType { // The weight assigned when assigning from or to a value. For example, in: // %b = getelementptr %a, 0 // ...The relationships are %b assign %a, and %a assign %b. This used to be // two edges, but having a distinction bought us nothing. Assign, // The edge used when we have an edge going from some handle to a Value. // Examples of this include: // %b = load %a (%b Dereference %a) // %b = extractelement %a, 0 (%a Dereference %b) Dereference, // The edge used when our edge goes from a value to a handle that may have // contained it at some point. Examples: // %b = load %a (%a Reference %b) // %b = extractelement %a, 0 (%b Reference %a) Reference }; // \brief Encodes the notion of a "use" struct Edge { // \brief Which value the edge is coming from Value *From; // \brief Which value the edge is pointing to Value *To; // \brief Edge weight EdgeType Weight; // \brief Whether we aliased any external values along the way that may be // invisible to the analysis (i.e. landingpad for exceptions, calls for // interprocedural analysis, etc.) StratifiedAttrs AdditionalAttrs; Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A) : From(From), To(To), Weight(W), AdditionalAttrs(A) {} }; // \brief Gets the edges our graph should have, based on an Instruction* class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> { CFLAAResult &AA; SmallVectorImpl<Edge> &Output; public: GetEdgesVisitor(CFLAAResult &AA, SmallVectorImpl<Edge> &Output) : AA(AA), Output(Output) {} void visitInstruction(Instruction &) { llvm_unreachable("Unsupported instruction encountered"); } void visitPtrToIntInst(PtrToIntInst &Inst) { auto *Ptr = Inst.getOperand(0); Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown)); } void visitIntToPtrInst(IntToPtrInst &Inst) { auto *Ptr = &Inst; Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown)); } void visitCastInst(CastInst &Inst) { Output.push_back( Edge(&Inst, Inst.getOperand(0), EdgeType::Assign, AttrNone)); } void visitBinaryOperator(BinaryOperator &Inst) { auto *Op1 = Inst.getOperand(0); auto *Op2 = Inst.getOperand(1); Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone)); Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone)); } void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) { auto *Ptr = Inst.getPointerOperand(); auto *Val = Inst.getNewValOperand(); Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone)); } void visitAtomicRMWInst(AtomicRMWInst &Inst) { auto *Ptr = Inst.getPointerOperand(); auto *Val = Inst.getValOperand(); Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone)); } void visitPHINode(PHINode &Inst) { for (Value *Val : Inst.incoming_values()) { Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone)); } } void visitGetElementPtrInst(GetElementPtrInst &Inst) { auto *Op = Inst.getPointerOperand(); Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone)); for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I) Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone)); } void visitSelectInst(SelectInst &Inst) { // Condition is not processed here (The actual statement producing // the condition result is processed elsewhere). For select, the // condition is evaluated, but not loaded, stored, or assigned // simply as a result of being the condition of a select. auto *TrueVal = Inst.getTrueValue(); Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone)); auto *FalseVal = Inst.getFalseValue(); Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone)); } void visitAllocaInst(AllocaInst &) {} void visitLoadInst(LoadInst &Inst) { auto *Ptr = Inst.getPointerOperand(); auto *Val = &Inst; Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone)); } void visitStoreInst(StoreInst &Inst) { auto *Ptr = Inst.getPointerOperand(); auto *Val = Inst.getValueOperand(); Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone)); } void visitVAArgInst(VAArgInst &Inst) { // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does // two things: // 1. Loads a value from *((T*)*Ptr). // 2. Increments (stores to) *Ptr by some target-specific amount. // For now, we'll handle this like a landingpad instruction (by placing the // result in its own group, and having that group alias externals). auto *Val = &Inst; Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll)); } static bool isFunctionExternal(Function *Fn) { return Fn->isDeclaration() || !Fn->hasLocalLinkage(); } // Gets whether the sets at Index1 above, below, or equal to the sets at // Index2. Returns None if they are not in the same set chain. static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets, StratifiedIndex Index1, StratifiedIndex Index2) { if (Index1 == Index2) return Level::Same; const auto *Current = &Sets.getLink(Index1); while (Current->hasBelow()) { if (Current->Below == Index2) return Level::Below; Current = &Sets.getLink(Current->Below); } Current = &Sets.getLink(Index1); while (Current->hasAbove()) { if (Current->Above == Index2) return Level::Above; Current = &Sets.getLink(Current->Above); } return NoneType(); } bool tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns, Value *FuncValue, const iterator_range<User::op_iterator> &Args) { const unsigned ExpectedMaxArgs = 8; const unsigned MaxSupportedArgs = 50; assert(Fns.size() > 0); // I put this here to give us an upper bound on time taken by IPA. Is it // really (realistically) needed? Keep in mind that we do have an n^2 algo. if (std::distance(Args.begin(), Args.end()) > (int)MaxSupportedArgs) return false; // Exit early if we'll fail anyway for (auto *Fn : Fns) { if (isFunctionExternal(Fn) || Fn->isVarArg()) return false; auto &MaybeInfo = AA.ensureCached(Fn); if (!MaybeInfo.hasValue()) return false; } SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end()); SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters; for (auto *Fn : Fns) { auto &Info = *AA.ensureCached(Fn); auto &Sets = Info.Sets; auto &RetVals = Info.ReturnedValues; Parameters.clear(); for (auto &Param : Fn->args()) { auto MaybeInfo = Sets.find(&Param); // Did a new parameter somehow get added to the function/slip by? if (!MaybeInfo.hasValue()) return false; Parameters.push_back(*MaybeInfo); } // Adding an edge from argument -> return value for each parameter that // may alias the return value for (unsigned I = 0, E = Parameters.size(); I != E; ++I) { auto &ParamInfo = Parameters[I]; auto &ArgVal = Arguments[I]; bool AddEdge = false; StratifiedAttrs Externals; for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) { auto MaybeInfo = Sets.find(RetVals[X]); if (!MaybeInfo.hasValue()) return false; auto &RetInfo = *MaybeInfo; auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs; auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs; auto MaybeRelation = getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index); if (MaybeRelation.hasValue()) { AddEdge = true; Externals |= RetAttrs | ParamAttrs; } } if (AddEdge) Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign, StratifiedAttrs().flip())); } if (Parameters.size() != Arguments.size()) return false; // Adding edges between arguments for arguments that may end up aliasing // each other. This is necessary for functions such as // void foo(int** a, int** b) { *a = *b; } // (Technically, the proper sets for this would be those below // Arguments[I] and Arguments[X], but our algorithm will produce // extremely similar, and equally correct, results either way) for (unsigned I = 0, E = Arguments.size(); I != E; ++I) { auto &MainVal = Arguments[I]; auto &MainInfo = Parameters[I]; auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs; for (unsigned X = I + 1; X != E; ++X) { auto &SubInfo = Parameters[X]; auto &SubVal = Arguments[X]; auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs; auto MaybeRelation = getIndexRelation(Sets, MainInfo.Index, SubInfo.Index); if (!MaybeRelation.hasValue()) continue; auto NewAttrs = SubAttrs | MainAttrs; Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs)); } } } return true; } template <typename InstT> void visitCallLikeInst(InstT &Inst) { // TODO: Add support for noalias args/all the other fun function attributes // that we can tack on. SmallVector<Function *, 4> Targets; if (getPossibleTargets(&Inst, Targets)) { if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands())) return; // Cleanup from interprocedural analysis Output.clear(); } // Because the function is opaque, we need to note that anything // could have happened to the arguments, and that the result could alias // just about anything, too. // The goal of the loop is in part to unify many Values into one set, so we // don't care if the function is void there. for (Value *V : Inst.arg_operands()) Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll)); if (Inst.getNumArgOperands() == 0 && Inst.getType() != Type::getVoidTy(Inst.getContext())) Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll)); } void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); } void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); } // Because vectors/aggregates are immutable and unaddressable, // there's nothing we can do to coax a value out of them, other // than calling Extract{Element,Value}. We can effectively treat // them as pointers to arbitrary memory locations we can store in // and load from. void visitExtractElementInst(ExtractElementInst &Inst) { auto *Ptr = Inst.getVectorOperand(); auto *Val = &Inst; Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone)); } void visitInsertElementInst(InsertElementInst &Inst) { auto *Vec = Inst.getOperand(0); auto *Val = Inst.getOperand(1); Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone)); Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone)); } void visitLandingPadInst(LandingPadInst &Inst) { // Exceptions come from "nowhere", from our analysis' perspective. // So we place the instruction its own group, noting that said group may // alias externals Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll)); } void visitInsertValueInst(InsertValueInst &Inst) { auto *Agg = Inst.getOperand(0); auto *Val = Inst.getOperand(1); Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone)); Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone)); } void visitExtractValueInst(ExtractValueInst &Inst) { auto *Ptr = Inst.getAggregateOperand(); Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone)); } void visitShuffleVectorInst(ShuffleVectorInst &Inst) { auto *From1 = Inst.getOperand(0); auto *From2 = Inst.getOperand(1); Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone)); Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone)); } void visitConstantExpr(ConstantExpr *CE) { switch (CE->getOpcode()) { default: llvm_unreachable("Unknown instruction type encountered!"); // Build the switch statement using the Instruction.def file. #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE: \ visit##OPCODE(*(CLASS *)CE); \ break; #include "llvm/IR/Instruction.def" } } }; // For a given instruction, we need to know which Value* to get the // users of in order to build our graph. In some cases (i.e. add), // we simply need the Instruction*. In other cases (i.e. store), // finding the users of the Instruction* is useless; we need to find // the users of the first operand. This handles determining which // value to follow for us. // // Note: we *need* to keep this in sync with GetEdgesVisitor. Add // something to GetEdgesVisitor, add it here -- remove something from // GetEdgesVisitor, remove it here. class GetTargetValueVisitor : public InstVisitor<GetTargetValueVisitor, Value *> { public: Value *visitInstruction(Instruction &Inst) { return &Inst; } Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); } Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) { return Inst.getPointerOperand(); } Value *visitAtomicRMWInst(AtomicRMWInst &Inst) { return Inst.getPointerOperand(); } Value *visitInsertElementInst(InsertElementInst &Inst) { return Inst.getOperand(0); } Value *visitInsertValueInst(InsertValueInst &Inst) { return Inst.getAggregateOperand(); } }; // Set building requires a weighted bidirectional graph. template <typename EdgeTypeT> class WeightedBidirectionalGraph { public: typedef std::size_t Node; private: const static Node StartNode = Node(0); struct Edge { EdgeTypeT Weight; Node Other; Edge(const EdgeTypeT &W, const Node &N) : Weight(W), Other(N) {} bool operator==(const Edge &E) const { return Weight == E.Weight && Other == E.Other; } bool operator!=(const Edge &E) const { return !operator==(E); } }; struct NodeImpl { std::vector<Edge> Edges; }; std::vector<NodeImpl> NodeImpls; bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); } const NodeImpl &getNode(Node N) const { return NodeImpls[N]; } NodeImpl &getNode(Node N) { return NodeImpls[N]; } public: // ----- Various Edge iterators for the graph ----- // // \brief Iterator for edges. Because this graph is bidirected, we don't // allow modification of the edges using this iterator. Additionally, the // iterator becomes invalid if you add edges to or from the node you're // getting the edges of. struct EdgeIterator : public std::iterator<std::forward_iterator_tag, std::tuple<EdgeTypeT, Node *>> { EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter) : Current(Iter) {} EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {} EdgeIterator &operator++() { ++Current; return *this; } EdgeIterator operator++(int) { EdgeIterator Copy(Current); operator++(); return Copy; } std::tuple<EdgeTypeT, Node> &operator*() { Store = std::make_tuple(Current->Weight, Current->Other); return Store; } bool operator==(const EdgeIterator &Other) const { return Current == Other.Current; } bool operator!=(const EdgeIterator &Other) const { return !operator==(Other); } private: typename std::vector<Edge>::const_iterator Current; std::tuple<EdgeTypeT, Node> Store; }; // Wrapper for EdgeIterator with begin()/end() calls. struct EdgeIterable { EdgeIterable(const std::vector<Edge> &Edges) : BeginIter(Edges.begin()), EndIter(Edges.end()) {} EdgeIterator begin() { return EdgeIterator(BeginIter); } EdgeIterator end() { return EdgeIterator(EndIter); } private: typename std::vector<Edge>::const_iterator BeginIter; typename std::vector<Edge>::const_iterator EndIter; }; // ----- Actual graph-related things ----- // WeightedBidirectionalGraph() {} WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other) : NodeImpls(std::move(Other.NodeImpls)) {} WeightedBidirectionalGraph<EdgeTypeT> & operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) { NodeImpls = std::move(Other.NodeImpls); return *this; } Node addNode() { auto Index = NodeImpls.size(); auto NewNode = Node(Index); NodeImpls.push_back(NodeImpl()); return NewNode; } void addEdge(Node From, Node To, const EdgeTypeT &Weight, const EdgeTypeT &ReverseWeight) { assert(inbounds(From)); assert(inbounds(To)); auto &FromNode = getNode(From); auto &ToNode = getNode(To); FromNode.Edges.push_back(Edge(Weight, To)); ToNode.Edges.push_back(Edge(ReverseWeight, From)); } EdgeIterable edgesFor(const Node &N) const { const auto &Node = getNode(N); return EdgeIterable(Node.Edges); } bool empty() const { return NodeImpls.empty(); } std::size_t size() const { return NodeImpls.size(); } // \brief Gets an arbitrary node in the graph as a starting point for // traversal. Node getEntryNode() { assert(inbounds(StartNode)); return StartNode; } }; typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT; typedef DenseMap<Value *, GraphT::Node> NodeMapT; } //===----------------------------------------------------------------------===// // Function declarations that require types defined in the namespace above //===----------------------------------------------------------------------===// // Given an argument number, returns the appropriate Attr index to set. static StratifiedAttr argNumberToAttrIndex(StratifiedAttr); // Given a Value, potentially return which AttrIndex it maps to. static Optional<StratifiedAttr> valueToAttrIndex(Value *Val); // Gets the inverse of a given EdgeType. static EdgeType flipWeight(EdgeType); // Gets edges of the given Instruction*, writing them to the SmallVector*. static void argsToEdges(CFLAAResult &, Instruction *, SmallVectorImpl<Edge> &); // Gets edges of the given ConstantExpr*, writing them to the SmallVector*. static void argsToEdges(CFLAAResult &, ConstantExpr *, SmallVectorImpl<Edge> &); // Gets the "Level" that one should travel in StratifiedSets // given an EdgeType. static Level directionOfEdgeType(EdgeType); // Builds the graph needed for constructing the StratifiedSets for the // given function static void buildGraphFrom(CFLAAResult &, Function *, SmallVectorImpl<Value *> &, NodeMapT &, GraphT &); // Gets the edges of a ConstantExpr as if it was an Instruction. This // function also acts on any nested ConstantExprs, adding the edges // of those to the given SmallVector as well. static void constexprToEdges(CFLAAResult &, ConstantExpr &, SmallVectorImpl<Edge> &); // Given an Instruction, this will add it to the graph, along with any // Instructions that are potentially only available from said Instruction // For example, given the following line: // %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2 // addInstructionToGraph would add both the `load` and `getelementptr` // instructions to the graph appropriately. static void addInstructionToGraph(CFLAAResult &, Instruction &, SmallVectorImpl<Value *> &, NodeMapT &, GraphT &); // Notes whether it would be pointless to add the given Value to our sets. static bool canSkipAddingToSets(Value *Val); static Optional<Function *> parentFunctionOfValue(Value *Val) { if (auto *Inst = dyn_cast<Instruction>(Val)) { auto *Bb = Inst->getParent(); return Bb->getParent(); } if (auto *Arg = dyn_cast<Argument>(Val)) return Arg->getParent(); return NoneType(); } template <typename Inst> static bool getPossibleTargets(Inst *Call, SmallVectorImpl<Function *> &Output) { if (auto *Fn = Call->getCalledFunction()) { Output.push_back(Fn); return true; } // TODO: If the call is indirect, we might be able to enumerate all potential // targets of the call and return them, rather than just failing. return false; } static Optional<Value *> getTargetValue(Instruction *Inst) { GetTargetValueVisitor V; return V.visit(Inst); } static bool hasUsefulEdges(Instruction *Inst) { bool IsNonInvokeTerminator = isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst); return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator; } static bool hasUsefulEdges(ConstantExpr *CE) { // ConstantExpr doesn't have terminators, invokes, or fences, so only needs // to check for compares. return CE->getOpcode() != Instruction::ICmp && CE->getOpcode() != Instruction::FCmp; } static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) { if (isa<GlobalValue>(Val)) return AttrGlobalIndex; if (auto *Arg = dyn_cast<Argument>(Val)) // Only pointer arguments should have the argument attribute, // because things can't escape through scalars without us seeing a // cast, and thus, interaction with them doesn't matter. if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy()) return argNumberToAttrIndex(Arg->getArgNo()); return NoneType(); } static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) { if (ArgNum >= AttrMaxNumArgs) return AttrAllIndex; return ArgNum + AttrFirstArgIndex; } static EdgeType flipWeight(EdgeType Initial) { switch (Initial) { case EdgeType::Assign: return EdgeType::Assign; case EdgeType::Dereference: return EdgeType::Reference; case EdgeType::Reference: return EdgeType::Dereference; } llvm_unreachable("Incomplete coverage of EdgeType enum"); } static void argsToEdges(CFLAAResult &Analysis, Instruction *Inst, SmallVectorImpl<Edge> &Output) { assert(hasUsefulEdges(Inst) && "Expected instructions to have 'useful' edges"); GetEdgesVisitor v(Analysis, Output); v.visit(Inst); } static void argsToEdges(CFLAAResult &Analysis, ConstantExpr *CE, SmallVectorImpl<Edge> &Output) { assert(hasUsefulEdges(CE) && "Expected constant expr to have 'useful' edges"); GetEdgesVisitor v(Analysis, Output); v.visitConstantExpr(CE); } static Level directionOfEdgeType(EdgeType Weight) { switch (Weight) { case EdgeType::Reference: return Level::Above; case EdgeType::Dereference: return Level::Below; case EdgeType::Assign: return Level::Same; } llvm_unreachable("Incomplete switch coverage"); } static void constexprToEdges(CFLAAResult &Analysis, ConstantExpr &CExprToCollapse, SmallVectorImpl<Edge> &Results) { SmallVector<ConstantExpr *, 4> Worklist; Worklist.push_back(&CExprToCollapse); SmallVector<Edge, 8> ConstexprEdges; SmallPtrSet<ConstantExpr *, 4> Visited; while (!Worklist.empty()) { auto *CExpr = Worklist.pop_back_val(); if (!hasUsefulEdges(CExpr)) continue; ConstexprEdges.clear(); argsToEdges(Analysis, CExpr, ConstexprEdges); for (auto &Edge : ConstexprEdges) { if (auto *Nested = dyn_cast<ConstantExpr>(Edge.From)) if (Visited.insert(Nested).second) Worklist.push_back(Nested); if (auto *Nested = dyn_cast<ConstantExpr>(Edge.To)) if (Visited.insert(Nested).second) Worklist.push_back(Nested); } Results.append(ConstexprEdges.begin(), ConstexprEdges.end()); } } static void addInstructionToGraph(CFLAAResult &Analysis, Instruction &Inst, SmallVectorImpl<Value *> &ReturnedValues, NodeMapT &Map, GraphT &Graph) { const auto findOrInsertNode = [&Map, &Graph](Value *Val) { auto Pair = Map.insert(std::make_pair(Val, GraphT::Node())); auto &Iter = Pair.first; if (Pair.second) { auto NewNode = Graph.addNode(); Iter->second = NewNode; } return Iter->second; }; // We don't want the edges of most "return" instructions, but we *do* want // to know what can be returned. if (isa<ReturnInst>(&Inst)) ReturnedValues.push_back(&Inst); if (!hasUsefulEdges(&Inst)) return; SmallVector<Edge, 8> Edges; argsToEdges(Analysis, &Inst, Edges); // In the case of an unused alloca (or similar), edges may be empty. Note // that it exists so we can potentially answer NoAlias. if (Edges.empty()) { auto MaybeVal = getTargetValue(&Inst); assert(MaybeVal.hasValue()); auto *Target = *MaybeVal; findOrInsertNode(Target); return; } const auto addEdgeToGraph = [&Graph, &findOrInsertNode](const Edge &E) { auto To = findOrInsertNode(E.To); auto From = findOrInsertNode(E.From); auto FlippedWeight = flipWeight(E.Weight); auto Attrs = E.AdditionalAttrs; Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs), std::make_pair(FlippedWeight, Attrs)); }; SmallVector<ConstantExpr *, 4> ConstantExprs; for (const Edge &E : Edges) { addEdgeToGraph(E); if (auto *Constexpr = dyn_cast<ConstantExpr>(E.To)) ConstantExprs.push_back(Constexpr); if (auto *Constexpr = dyn_cast<ConstantExpr>(E.From)) ConstantExprs.push_back(Constexpr); } for (ConstantExpr *CE : ConstantExprs) { Edges.clear(); constexprToEdges(Analysis, *CE, Edges); std::for_each(Edges.begin(), Edges.end(), addEdgeToGraph); } } // Aside: We may remove graph construction entirely, because it doesn't really // buy us much that we don't already have. I'd like to add interprocedural // analysis prior to this however, in case that somehow requires the graph // produced by this for efficient execution static void buildGraphFrom(CFLAAResult &Analysis, Function *Fn, SmallVectorImpl<Value *> &ReturnedValues, NodeMapT &Map, GraphT &Graph) { for (auto &Bb : Fn->getBasicBlockList()) for (auto &Inst : Bb.getInstList()) addInstructionToGraph(Analysis, Inst, ReturnedValues, Map, Graph); } static bool canSkipAddingToSets(Value *Val) { // Constants can share instances, which may falsely unify multiple // sets, e.g. in // store i32* null, i32** %ptr1 // store i32* null, i32** %ptr2 // clearly ptr1 and ptr2 should not be unified into the same set, so // we should filter out the (potentially shared) instance to // i32* null. if (isa<Constant>(Val)) { bool Container = isa<ConstantVector>(Val) || isa<ConstantArray>(Val) || isa<ConstantStruct>(Val); // TODO: Because all of these things are constant, we can determine whether // the data is *actually* mutable at graph building time. This will probably // come for free/cheap with offset awareness. bool CanStoreMutableData = isa<GlobalValue>(Val) || isa<ConstantExpr>(Val) || Container; return !CanStoreMutableData; } return false; } // Builds the graph + StratifiedSets for a function. CFLAAResult::FunctionInfo CFLAAResult::buildSetsFrom(Function *Fn) { NodeMapT Map; GraphT Graph; SmallVector<Value *, 4> ReturnedValues; buildGraphFrom(*this, Fn, ReturnedValues, Map, Graph); DenseMap<GraphT::Node, Value *> NodeValueMap; NodeValueMap.resize(Map.size()); for (const auto &Pair : Map) NodeValueMap.insert(std::make_pair(Pair.second, Pair.first)); const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) { auto ValIter = NodeValueMap.find(Node); assert(ValIter != NodeValueMap.end()); return ValIter->second; }; StratifiedSetsBuilder<Value *> Builder; SmallVector<GraphT::Node, 16> Worklist; for (auto &Pair : Map) { Worklist.clear(); auto *Value = Pair.first; Builder.add(Value); auto InitialNode = Pair.second; Worklist.push_back(InitialNode); while (!Worklist.empty()) { auto Node = Worklist.pop_back_val(); auto *CurValue = findValueOrDie(Node); if (canSkipAddingToSets(CurValue)) continue; for (const auto &EdgeTuple : Graph.edgesFor(Node)) { auto Weight = std::get<0>(EdgeTuple); auto Label = Weight.first; auto &OtherNode = std::get<1>(EdgeTuple); auto *OtherValue = findValueOrDie(OtherNode); if (canSkipAddingToSets(OtherValue)) continue; bool Added; switch (directionOfEdgeType(Label)) { case Level::Above: Added = Builder.addAbove(CurValue, OtherValue); break; case Level::Below: Added = Builder.addBelow(CurValue, OtherValue); break; case Level::Same: Added = Builder.addWith(CurValue, OtherValue); break; } auto Aliasing = Weight.second; if (auto MaybeCurIndex = valueToAttrIndex(CurValue)) Aliasing.set(*MaybeCurIndex); if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue)) Aliasing.set(*MaybeOtherIndex); Builder.noteAttributes(CurValue, Aliasing); Builder.noteAttributes(OtherValue, Aliasing); if (Added) Worklist.push_back(OtherNode); } } } // There are times when we end up with parameters not in our graph (i.e. if // it's only used as the condition of a branch). Other bits of code depend on // things that were present during construction being present in the graph. // So, we add all present arguments here. for (auto &Arg : Fn->args()) { if (!Builder.add(&Arg)) continue; auto Attrs = valueToAttrIndex(&Arg); if (Attrs.hasValue()) Builder.noteAttributes(&Arg, *Attrs); } return FunctionInfo(Builder.build(), std::move(ReturnedValues)); } void CFLAAResult::scan(Function *Fn) { auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>())); (void)InsertPair; assert(InsertPair.second && "Trying to scan a function that has already been cached"); FunctionInfo Info(buildSetsFrom(Fn)); Cache[Fn] = std::move(Info); Handles.push_front(FunctionHandle(Fn, this)); } void CFLAAResult::evict(Function *Fn) { Cache.erase(Fn); } /// \brief Ensures that the given function is available in the cache. /// Returns the appropriate entry from the cache. const Optional<CFLAAResult::FunctionInfo> & CFLAAResult::ensureCached(Function *Fn) { auto Iter = Cache.find(Fn); if (Iter == Cache.end()) { scan(Fn); Iter = Cache.find(Fn); assert(Iter != Cache.end()); assert(Iter->second.hasValue()); } return Iter->second; } AliasResult CFLAAResult::query(const MemoryLocation &LocA, const MemoryLocation &LocB) { auto *ValA = const_cast<Value *>(LocA.Ptr); auto *ValB = const_cast<Value *>(LocB.Ptr); Function *Fn = nullptr; auto MaybeFnA = parentFunctionOfValue(ValA); auto MaybeFnB = parentFunctionOfValue(ValB); if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) { // The only times this is known to happen are when globals + InlineAsm // are involved DEBUG(dbgs() << "CFLAA: could not extract parent function information.\n"); return MayAlias; } if (MaybeFnA.hasValue()) { Fn = *MaybeFnA; assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) && "Interprocedural queries not supported"); } else { Fn = *MaybeFnB; } assert(Fn != nullptr); auto &MaybeInfo = ensureCached(Fn); assert(MaybeInfo.hasValue()); auto &Sets = MaybeInfo->Sets; auto MaybeA = Sets.find(ValA); if (!MaybeA.hasValue()) return MayAlias; auto MaybeB = Sets.find(ValB); if (!MaybeB.hasValue()) return MayAlias; auto SetA = *MaybeA; auto SetB = *MaybeB; auto AttrsA = Sets.getLink(SetA.Index).Attrs; auto AttrsB = Sets.getLink(SetB.Index).Attrs; // Stratified set attributes are used as markets to signify whether a member // of a StratifiedSet (or a member of a set above the current set) has // interacted with either arguments or globals. "Interacted with" meaning // its value may be different depending on the value of an argument or // global. The thought behind this is that, because arguments and globals // may alias each other, if AttrsA and AttrsB have touched args/globals, // we must conservatively say that they alias. However, if at least one of // the sets has no values that could legally be altered by changing the value // of an argument or global, then we don't have to be as conservative. if (AttrsA.any() && AttrsB.any()) return MayAlias; // We currently unify things even if the accesses to them may not be in // bounds, so we can't return partial alias here because we don't // know whether the pointer is really within the object or not. // IE Given an out of bounds GEP and an alloca'd pointer, we may // unify the two. We can't return partial alias for this case. // Since we do not currently track enough information to // differentiate if (SetA.Index == SetB.Index) return MayAlias; return NoAlias; } CFLAAResult CFLAA::run(Function &F, AnalysisManager<Function> *AM) { return CFLAAResult(AM->getResult<TargetLibraryAnalysis>(F)); } char CFLAA::PassID; char CFLAAWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis", false, true) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis", false, true) ImmutablePass *llvm::createCFLAAWrapperPass() { return new CFLAAWrapperPass(); } CFLAAWrapperPass::CFLAAWrapperPass() : ImmutablePass(ID) { initializeCFLAAWrapperPassPass(*PassRegistry::getPassRegistry()); } bool CFLAAWrapperPass::doInitialization(Module &M) { Result.reset( new CFLAAResult(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI())); return false; } bool CFLAAWrapperPass::doFinalization(Module &M) { Result.reset(); return false; } void CFLAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<TargetLibraryInfoWrapperPass>(); }