Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/CodeGen/AtomicExpandPass.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass (at IR level) to replace atomic instructions with // target specific instruction which implement the same semantics in a way // which better fits the target backend. This can include the use of either // (intrinsic-based) load-linked/store-conditional loops, AtomicCmpXchg, or // type coercions. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/AtomicExpandUtils.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "atomic-expand" namespace { class AtomicExpand: public FunctionPass { const TargetMachine *TM; const TargetLowering *TLI; public: static char ID; // Pass identification, replacement for typeid explicit AtomicExpand(const TargetMachine *TM = nullptr) : FunctionPass(ID), TM(TM), TLI(nullptr) { initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; private: bool bracketInstWithFences(Instruction *I, AtomicOrdering Order, bool IsStore, bool IsLoad); IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); bool tryExpandAtomicLoad(LoadInst *LI); bool expandAtomicLoadToLL(LoadInst *LI); bool expandAtomicLoadToCmpXchg(LoadInst *LI); StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); bool expandAtomicStore(StoreInst *SI); bool tryExpandAtomicRMW(AtomicRMWInst *AI); bool expandAtomicOpToLLSC( Instruction *I, Value *Addr, AtomicOrdering MemOpOrder, std::function<Value *(IRBuilder<> &, Value *)> PerformOp); bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); bool isIdempotentRMW(AtomicRMWInst *AI); bool simplifyIdempotentRMW(AtomicRMWInst *AI); }; } char AtomicExpand::ID = 0; char &llvm::AtomicExpandID = AtomicExpand::ID; INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg", false, false) FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { return new AtomicExpand(TM); } bool AtomicExpand::runOnFunction(Function &F) { if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand()) return false; TLI = TM->getSubtargetImpl(F)->getTargetLowering(); SmallVector<Instruction *, 1> AtomicInsts; // Changing control-flow while iterating through it is a bad idea, so gather a // list of all atomic instructions before we start. for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { if (I->isAtomic()) AtomicInsts.push_back(&*I); } bool MadeChange = false; for (auto I : AtomicInsts) { auto LI = dyn_cast<LoadInst>(I); auto SI = dyn_cast<StoreInst>(I); auto RMWI = dyn_cast<AtomicRMWInst>(I); auto CASI = dyn_cast<AtomicCmpXchgInst>(I); assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) && "Unknown atomic instruction"); auto FenceOrdering = Monotonic; bool IsStore, IsLoad; if (TLI->getInsertFencesForAtomic()) { if (LI && isAtLeastAcquire(LI->getOrdering())) { FenceOrdering = LI->getOrdering(); LI->setOrdering(Monotonic); IsStore = false; IsLoad = true; } else if (SI && isAtLeastRelease(SI->getOrdering())) { FenceOrdering = SI->getOrdering(); SI->setOrdering(Monotonic); IsStore = true; IsLoad = false; } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) || isAtLeastAcquire(RMWI->getOrdering()))) { FenceOrdering = RMWI->getOrdering(); RMWI->setOrdering(Monotonic); IsStore = IsLoad = true; } else if (CASI && !TLI->shouldExpandAtomicCmpXchgInIR(CASI) && (isAtLeastRelease(CASI->getSuccessOrdering()) || isAtLeastAcquire(CASI->getSuccessOrdering()))) { // If a compare and swap is lowered to LL/SC, we can do smarter fence // insertion, with a stronger one on the success path than on the // failure path. As a result, fence insertion is directly done by // expandAtomicCmpXchg in that case. FenceOrdering = CASI->getSuccessOrdering(); CASI->setSuccessOrdering(Monotonic); CASI->setFailureOrdering(Monotonic); IsStore = IsLoad = true; } if (FenceOrdering != Monotonic) { MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad); } } if (LI) { if (LI->getType()->isFloatingPointTy()) { // TODO: add a TLI hook to control this so that each target can // convert to lowering the original type one at a time. LI = convertAtomicLoadToIntegerType(LI); assert(LI->getType()->isIntegerTy() && "invariant broken"); MadeChange = true; } MadeChange |= tryExpandAtomicLoad(LI); } else if (SI) { if (SI->getValueOperand()->getType()->isFloatingPointTy()) { // TODO: add a TLI hook to control this so that each target can // convert to lowering the original type one at a time. SI = convertAtomicStoreToIntegerType(SI); assert(SI->getValueOperand()->getType()->isIntegerTy() && "invariant broken"); MadeChange = true; } if (TLI->shouldExpandAtomicStoreInIR(SI)) MadeChange |= expandAtomicStore(SI); } else if (RMWI) { // There are two different ways of expanding RMW instructions: // - into a load if it is idempotent // - into a Cmpxchg/LL-SC loop otherwise // we try them in that order. if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { MadeChange = true; } else { MadeChange |= tryExpandAtomicRMW(RMWI); } } else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI)) { MadeChange |= expandAtomicCmpXchg(CASI); } } return MadeChange; } bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order, bool IsStore, bool IsLoad) { IRBuilder<> Builder(I); auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad); auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad); // The trailing fence is emitted before the instruction instead of after // because there is no easy way of setting Builder insertion point after // an instruction. So we must erase it from the BB, and insert it back // in the right place. // We have a guard here because not every atomic operation generates a // trailing fence. if (TrailingFence) { TrailingFence->removeFromParent(); TrailingFence->insertAfter(I); } return (LeadingFence || TrailingFence); } /// Get the iX type with the same bitwidth as T. IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { EVT VT = TLI->getValueType(DL, T); unsigned BitWidth = VT.getStoreSizeInBits(); assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); return IntegerType::get(T->getContext(), BitWidth); } /// Convert an atomic load of a non-integral type to an integer load of the /// equivelent bitwidth. See the function comment on /// convertAtomicStoreToIntegerType for background. LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { auto *M = LI->getModule(); Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); IRBuilder<> Builder(LI); Value *Addr = LI->getPointerOperand(); Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); Value *NewAddr = Builder.CreateBitCast(Addr, PT); auto *NewLI = Builder.CreateLoad(NewAddr); NewLI->setAlignment(LI->getAlignment()); NewLI->setVolatile(LI->isVolatile()); NewLI->setAtomic(LI->getOrdering(), LI->getSynchScope()); DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); LI->replaceAllUsesWith(NewVal); LI->eraseFromParent(); return NewLI; } bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { switch (TLI->shouldExpandAtomicLoadInIR(LI)) { case TargetLoweringBase::AtomicExpansionKind::None: return false; case TargetLoweringBase::AtomicExpansionKind::LLSC: return expandAtomicOpToLLSC( LI, LI->getPointerOperand(), LI->getOrdering(), [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); case TargetLoweringBase::AtomicExpansionKind::LLOnly: return expandAtomicLoadToLL(LI); case TargetLoweringBase::AtomicExpansionKind::CmpXChg: return expandAtomicLoadToCmpXchg(LI); } llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); } bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { IRBuilder<> Builder(LI); // On some architectures, load-linked instructions are atomic for larger // sizes than normal loads. For example, the only 64-bit load guaranteed // to be single-copy atomic by ARM is an ldrexd (A3.5.3). Value *Val = TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); LI->replaceAllUsesWith(Val); LI->eraseFromParent(); return true; } bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { IRBuilder<> Builder(LI); AtomicOrdering Order = LI->getOrdering(); Value *Addr = LI->getPointerOperand(); Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); Constant *DummyVal = Constant::getNullValue(Ty); Value *Pair = Builder.CreateAtomicCmpXchg( Addr, DummyVal, DummyVal, Order, AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); LI->replaceAllUsesWith(Loaded); LI->eraseFromParent(); return true; } /// Convert an atomic store of a non-integral type to an integer store of the /// equivelent bitwidth. We used to not support floating point or vector /// atomics in the IR at all. The backends learned to deal with the bitcast /// idiom because that was the only way of expressing the notion of a atomic /// float or vector store. The long term plan is to teach each backend to /// instruction select from the original atomic store, but as a migration /// mechanism, we convert back to the old format which the backends understand. /// Each backend will need individual work to recognize the new format. StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { IRBuilder<> Builder(SI); auto *M = SI->getModule(); Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), M->getDataLayout()); Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); Value *Addr = SI->getPointerOperand(); Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); Value *NewAddr = Builder.CreateBitCast(Addr, PT); StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); NewSI->setAlignment(SI->getAlignment()); NewSI->setVolatile(SI->isVolatile()); NewSI->setAtomic(SI->getOrdering(), SI->getSynchScope()); DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); SI->eraseFromParent(); return NewSI; } bool AtomicExpand::expandAtomicStore(StoreInst *SI) { // This function is only called on atomic stores that are too large to be // atomic if implemented as a native store. So we replace them by an // atomic swap, that can be implemented for example as a ldrex/strex on ARM // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. // It is the responsibility of the target to only signal expansion via // shouldExpandAtomicRMW in cases where this is required and possible. IRBuilder<> Builder(SI); AtomicRMWInst *AI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), SI->getOrdering()); SI->eraseFromParent(); // Now we have an appropriate swap instruction, lower it as usual. return tryExpandAtomicRMW(AI); } static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, Value *Loaded, Value *NewVal, AtomicOrdering MemOpOrder, Value *&Success, Value *&NewLoaded) { Value* Pair = Builder.CreateAtomicCmpXchg( Addr, Loaded, NewVal, MemOpOrder, AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); Success = Builder.CreateExtractValue(Pair, 1, "success"); NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); } /// Emit IR to implement the given atomicrmw operation on values in registers, /// returning the new value. static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, Value *Loaded, Value *Inc) { Value *NewVal; switch (Op) { case AtomicRMWInst::Xchg: return Inc; case AtomicRMWInst::Add: return Builder.CreateAdd(Loaded, Inc, "new"); case AtomicRMWInst::Sub: return Builder.CreateSub(Loaded, Inc, "new"); case AtomicRMWInst::And: return Builder.CreateAnd(Loaded, Inc, "new"); case AtomicRMWInst::Nand: return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); case AtomicRMWInst::Or: return Builder.CreateOr(Loaded, Inc, "new"); case AtomicRMWInst::Xor: return Builder.CreateXor(Loaded, Inc, "new"); case AtomicRMWInst::Max: NewVal = Builder.CreateICmpSGT(Loaded, Inc); return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); case AtomicRMWInst::Min: NewVal = Builder.CreateICmpSLE(Loaded, Inc); return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); case AtomicRMWInst::UMax: NewVal = Builder.CreateICmpUGT(Loaded, Inc); return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); case AtomicRMWInst::UMin: NewVal = Builder.CreateICmpULE(Loaded, Inc); return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); default: llvm_unreachable("Unknown atomic op"); } } bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { switch (TLI->shouldExpandAtomicRMWInIR(AI)) { case TargetLoweringBase::AtomicExpansionKind::None: return false; case TargetLoweringBase::AtomicExpansionKind::LLSC: return expandAtomicOpToLLSC(AI, AI->getPointerOperand(), AI->getOrdering(), [&](IRBuilder<> &Builder, Value *Loaded) { return performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); }); case TargetLoweringBase::AtomicExpansionKind::CmpXChg: return expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); default: llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); } } bool AtomicExpand::expandAtomicOpToLLSC( Instruction *I, Value *Addr, AtomicOrdering MemOpOrder, std::function<Value *(IRBuilder<> &, Value *)> PerformOp) { BasicBlock *BB = I->getParent(); Function *F = BB->getParent(); LLVMContext &Ctx = F->getContext(); // Given: atomicrmw some_op iN* %addr, iN %incr ordering // // The standard expansion we produce is: // [...] // fence? // atomicrmw.start: // %loaded = @load.linked(%addr) // %new = some_op iN %loaded, %incr // %stored = @store_conditional(%new, %addr) // %try_again = icmp i32 ne %stored, 0 // br i1 %try_again, label %loop, label %atomicrmw.end // atomicrmw.end: // fence? // [...] BasicBlock *ExitBB = BB->splitBasicBlock(I->getIterator(), "atomicrmw.end"); BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); // This grabs the DebugLoc from I. IRBuilder<> Builder(I); // The split call above "helpfully" added a branch at the end of BB (to the // wrong place), but we might want a fence too. It's easiest to just remove // the branch entirely. std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); Builder.CreateBr(LoopBB); // Start the main loop block now that we've taken care of the preliminaries. Builder.SetInsertPoint(LoopBB); Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); Value *NewVal = PerformOp(Builder, Loaded); Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); Value *TryAgain = Builder.CreateICmpNE( StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); Builder.SetInsertPoint(ExitBB, ExitBB->begin()); I->replaceAllUsesWith(Loaded); I->eraseFromParent(); return true; } bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); AtomicOrdering FailureOrder = CI->getFailureOrdering(); Value *Addr = CI->getPointerOperand(); BasicBlock *BB = CI->getParent(); Function *F = BB->getParent(); LLVMContext &Ctx = F->getContext(); // If getInsertFencesForAtomic() returns true, then the target does not want // to deal with memory orders, and emitLeading/TrailingFence should take care // of everything. Otherwise, emitLeading/TrailingFence are no-op and we // should preserve the ordering. AtomicOrdering MemOpOrder = TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder; // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord // // The full expansion we produce is: // [...] // fence? // cmpxchg.start: // %loaded = @load.linked(%addr) // %should_store = icmp eq %loaded, %desired // br i1 %should_store, label %cmpxchg.trystore, // label %cmpxchg.nostore // cmpxchg.trystore: // %stored = @store_conditional(%new, %addr) // %success = icmp eq i32 %stored, 0 // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure // cmpxchg.success: // fence? // br label %cmpxchg.end // cmpxchg.nostore: // @load_linked_fail_balance()? // br label %cmpxchg.failure // cmpxchg.failure: // fence? // br label %cmpxchg.end // cmpxchg.end: // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 // [...] BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); // This grabs the DebugLoc from CI IRBuilder<> Builder(CI); // The split call above "helpfully" added a branch at the end of BB (to the // wrong place), but we might want a fence too. It's easiest to just remove // the branch entirely. std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, /*IsLoad=*/true); Builder.CreateBr(LoopBB); // Start the main loop block now that we've taken care of the preliminaries. Builder.SetInsertPoint(LoopBB); Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); Value *ShouldStore = Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); // If the cmpxchg doesn't actually need any ordering when it fails, we can // jump straight past that fence instruction (if it exists). Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); Builder.SetInsertPoint(TryStoreBB); Value *StoreSuccess = TLI->emitStoreConditional( Builder, CI->getNewValOperand(), Addr, MemOpOrder); StoreSuccess = Builder.CreateICmpEQ( StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); Builder.CreateCondBr(StoreSuccess, SuccessBB, CI->isWeak() ? FailureBB : LoopBB); // Make sure later instructions don't get reordered with a fence if necessary. Builder.SetInsertPoint(SuccessBB); TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, /*IsLoad=*/true); Builder.CreateBr(ExitBB); Builder.SetInsertPoint(NoStoreBB); // In the failing case, where we don't execute the store-conditional, the // target might want to balance out the load-linked with a dedicated // instruction (e.g., on ARM, clearing the exclusive monitor). TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); Builder.CreateBr(FailureBB); Builder.SetInsertPoint(FailureBB); TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, /*IsLoad=*/true); Builder.CreateBr(ExitBB); // Finally, we have control-flow based knowledge of whether the cmpxchg // succeeded or not. We expose this to later passes by converting any // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. // Setup the builder so we can create any PHIs we need. Builder.SetInsertPoint(ExitBB, ExitBB->begin()); PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); // Look for any users of the cmpxchg that are just comparing the loaded value // against the desired one, and replace them with the CFG-derived version. SmallVector<ExtractValueInst *, 2> PrunedInsts; for (auto User : CI->users()) { ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); if (!EV) continue; assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && "weird extraction from { iN, i1 }"); if (EV->getIndices()[0] == 0) EV->replaceAllUsesWith(Loaded); else EV->replaceAllUsesWith(Success); PrunedInsts.push_back(EV); } // We can remove the instructions now we're no longer iterating through them. for (auto EV : PrunedInsts) EV->eraseFromParent(); if (!CI->use_empty()) { // Some use of the full struct return that we don't understand has happened, // so we've got to reconstruct it properly. Value *Res; Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); Res = Builder.CreateInsertValue(Res, Success, 1); CI->replaceAllUsesWith(Res); } CI->eraseFromParent(); return true; } bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); if(!C) return false; AtomicRMWInst::BinOp Op = RMWI->getOperation(); switch(Op) { case AtomicRMWInst::Add: case AtomicRMWInst::Sub: case AtomicRMWInst::Or: case AtomicRMWInst::Xor: return C->isZero(); case AtomicRMWInst::And: return C->isMinusOne(); // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... default: return false; } } bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { tryExpandAtomicLoad(ResultingLoad); return true; } return false; } bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, CreateCmpXchgInstFun CreateCmpXchg) { assert(AI); AtomicOrdering MemOpOrder = AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering(); Value *Addr = AI->getPointerOperand(); BasicBlock *BB = AI->getParent(); Function *F = BB->getParent(); LLVMContext &Ctx = F->getContext(); // Given: atomicrmw some_op iN* %addr, iN %incr ordering // // The standard expansion we produce is: // [...] // %init_loaded = load atomic iN* %addr // br label %loop // loop: // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] // %new = some_op iN %loaded, %incr // %pair = cmpxchg iN* %addr, iN %loaded, iN %new // %new_loaded = extractvalue { iN, i1 } %pair, 0 // %success = extractvalue { iN, i1 } %pair, 1 // br i1 %success, label %atomicrmw.end, label %loop // atomicrmw.end: // [...] BasicBlock *ExitBB = BB->splitBasicBlock(AI->getIterator(), "atomicrmw.end"); BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); // This grabs the DebugLoc from AI. IRBuilder<> Builder(AI); // The split call above "helpfully" added a branch at the end of BB (to the // wrong place), but we want a load. It's easiest to just remove // the branch entirely. std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); LoadInst *InitLoaded = Builder.CreateLoad(Addr); // Atomics require at least natural alignment. InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits() / 8); Builder.CreateBr(LoopBB); // Start the main loop block now that we've taken care of the preliminaries. Builder.SetInsertPoint(LoopBB); PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded"); Loaded->addIncoming(InitLoaded, BB); Value *NewVal = performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); Value *NewLoaded = nullptr; Value *Success = nullptr; CreateCmpXchg(Builder, Addr, Loaded, NewVal, MemOpOrder, Success, NewLoaded); assert(Success && NewLoaded); Loaded->addIncoming(NewLoaded, LoopBB); Builder.CreateCondBr(Success, ExitBB, LoopBB); Builder.SetInsertPoint(ExitBB, ExitBB->begin()); AI->replaceAllUsesWith(NewLoaded); AI->eraseFromParent(); return true; }