Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/CodeGen/ImplicitNullChecks.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass turns explicit null checks of the form // // test %r10, %r10 // je throw_npe // movl (%r10), %esi // ... // // to // // faulting_load_op("movl (%r10), %esi", throw_npe) // ... // // With the help of a runtime that understands the .fault_maps section, // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs // a page fault. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; static cl::opt<unsigned> PageSize("imp-null-check-page-size", cl::desc("The page size of the target in " "bytes"), cl::init(4096)); #define DEBUG_TYPE "implicit-null-checks" STATISTIC(NumImplicitNullChecks, "Number of explicit null checks made implicit"); namespace { class ImplicitNullChecks : public MachineFunctionPass { /// Represents one null check that can be made implicit. struct NullCheck { // The memory operation the null check can be folded into. MachineInstr *MemOperation; // The instruction actually doing the null check (Ptr != 0). MachineInstr *CheckOperation; // The block the check resides in. MachineBasicBlock *CheckBlock; // The block branched to if the pointer is non-null. MachineBasicBlock *NotNullSucc; // The block branched to if the pointer is null. MachineBasicBlock *NullSucc; NullCheck() : MemOperation(), CheckOperation(), CheckBlock(), NotNullSucc(), NullSucc() {} explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, MachineBasicBlock *checkBlock, MachineBasicBlock *notNullSucc, MachineBasicBlock *nullSucc) : MemOperation(memOperation), CheckOperation(checkOperation), CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc) { } }; const TargetInstrInfo *TII = nullptr; const TargetRegisterInfo *TRI = nullptr; MachineModuleInfo *MMI = nullptr; bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList); MachineInstr *insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB, MCSymbol *HandlerLabel); void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList); public: static char ID; ImplicitNullChecks() : MachineFunctionPass(ID) { initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; }; /// \brief Detect re-ordering hazards and dependencies. /// /// This class keeps track of defs and uses, and can be queried if a given /// machine instruction can be re-ordered from after the machine instructions /// seen so far to before them. class HazardDetector { DenseSet<unsigned> RegDefs; DenseSet<unsigned> RegUses; const TargetRegisterInfo &TRI; bool hasSeenClobber; public: explicit HazardDetector(const TargetRegisterInfo &TRI) : TRI(TRI), hasSeenClobber(false) {} /// \brief Make a note of \p MI for later queries to isSafeToHoist. /// /// May clobber this HazardDetector instance. \see isClobbered. void rememberInstruction(MachineInstr *MI); /// \brief Return true if it is safe to hoist \p MI from after all the /// instructions seen so far (via rememberInstruction) to before it. bool isSafeToHoist(MachineInstr *MI); /// \brief Return true if this instance of HazardDetector has been clobbered /// (i.e. has no more useful information). /// /// A HazardDetecter is clobbered when it sees a construct it cannot /// understand, and it would have to return a conservative answer for all /// future queries. Having a separate clobbered state lets the client code /// bail early, without making queries about all of the future instructions /// (which would have returned the most conservative answer anyway). /// /// Calling rememberInstruction or isSafeToHoist on a clobbered HazardDetector /// is an error. bool isClobbered() { return hasSeenClobber; } }; } void HazardDetector::rememberInstruction(MachineInstr *MI) { assert(!isClobbered() && "Don't add instructions to a clobbered hazard detector"); if (MI->mayStore() || MI->hasUnmodeledSideEffects()) { hasSeenClobber = true; return; } for (auto *MMO : MI->memoperands()) { // Right now we don't want to worry about LLVM's memory model. if (!MMO->isUnordered()) { hasSeenClobber = true; return; } } for (auto &MO : MI->operands()) { if (!MO.isReg() || !MO.getReg()) continue; if (MO.isDef()) RegDefs.insert(MO.getReg()); else RegUses.insert(MO.getReg()); } } bool HazardDetector::isSafeToHoist(MachineInstr *MI) { assert(!isClobbered() && "isSafeToHoist cannot do anything useful!"); // Right now we don't want to worry about LLVM's memory model. This can be // made more precise later. for (auto *MMO : MI->memoperands()) if (!MMO->isUnordered()) return false; for (auto &MO : MI->operands()) { if (MO.isReg() && MO.getReg()) { for (unsigned Reg : RegDefs) if (TRI.regsOverlap(Reg, MO.getReg())) return false; // We found a write-after-write or read-after-write if (MO.isDef()) for (unsigned Reg : RegUses) if (TRI.regsOverlap(Reg, MO.getReg())) return false; // We found a write-after-read } } return true; } bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getRegInfo().getTargetRegisterInfo(); MMI = &MF.getMMI(); SmallVector<NullCheck, 16> NullCheckList; for (auto &MBB : MF) analyzeBlockForNullChecks(MBB, NullCheckList); if (!NullCheckList.empty()) rewriteNullChecks(NullCheckList); return !NullCheckList.empty(); } /// Analyze MBB to check if its terminating branch can be turned into an /// implicit null check. If yes, append a description of the said null check to /// NullCheckList and return true, else return false. bool ImplicitNullChecks::analyzeBlockForNullChecks( MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) { typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; MDNode *BranchMD = nullptr; if (auto *BB = MBB.getBasicBlock()) BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit); if (!BranchMD) return false; MachineBranchPredicate MBP; if (TII->AnalyzeBranchPredicate(MBB, MBP, true)) return false; // Is the predicate comparing an integer to zero? if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && (MBP.Predicate == MachineBranchPredicate::PRED_NE || MBP.Predicate == MachineBranchPredicate::PRED_EQ))) return false; // If we cannot erase the test instruction itself, then making the null check // implicit does not buy us much. if (!MBP.SingleUseCondition) return false; MachineBasicBlock *NotNullSucc, *NullSucc; if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { NotNullSucc = MBP.TrueDest; NullSucc = MBP.FalseDest; } else { NotNullSucc = MBP.FalseDest; NullSucc = MBP.TrueDest; } // We handle the simplest case for now. We can potentially do better by using // the machine dominator tree. if (NotNullSucc->pred_size() != 1) return false; // Starting with a code fragment like: // // test %RAX, %RAX // jne LblNotNull // // LblNull: // callq throw_NullPointerException // // LblNotNull: // Inst0 // Inst1 // ... // Def = Load (%RAX + <offset>) // ... // // // we want to end up with // // Def = FaultingLoad (%RAX + <offset>), LblNull // jmp LblNotNull ;; explicit or fallthrough // // LblNotNull: // Inst0 // Inst1 // ... // // LblNull: // callq throw_NullPointerException // // // To see why this is legal, consider the two possibilities: // // 1. %RAX is null: since we constrain <offset> to be less than PageSize, the // load instruction dereferences the null page, causing a segmentation // fault. // // 2. %RAX is not null: in this case we know that the load cannot fault, as // otherwise the load would've faulted in the original program too and the // original program would've been undefined. // // This reasoning cannot be extended to justify hoisting through arbitrary // control flow. For instance, in the example below (in pseudo-C) // // if (ptr == null) { throw_npe(); unreachable; } // if (some_cond) { return 42; } // v = ptr->field; // LD // ... // // we cannot (without code duplication) use the load marked "LD" to null check // ptr -- clause (2) above does not apply in this case. In the above program // the safety of ptr->field can be dependent on some_cond; and, for instance, // ptr could be some non-null invalid reference that never gets loaded from // because some_cond is always true. unsigned PointerReg = MBP.LHS.getReg(); HazardDetector HD(*TRI); for (auto MII = NotNullSucc->begin(), MIE = NotNullSucc->end(); MII != MIE; ++MII) { MachineInstr *MI = &*MII; unsigned BaseReg, Offset; if (TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) if (MI->mayLoad() && !MI->isPredicable() && BaseReg == PointerReg && Offset < PageSize && MI->getDesc().getNumDefs() <= 1 && HD.isSafeToHoist(MI)) { NullCheckList.emplace_back(MI, MBP.ConditionDef, &MBB, NotNullSucc, NullSucc); return true; } HD.rememberInstruction(MI); if (HD.isClobbered()) return false; } return false; } /// Wrap a machine load instruction, LoadMI, into a FAULTING_LOAD_OP machine /// instruction. The FAULTING_LOAD_OP instruction does the same load as LoadMI /// (defining the same register), and branches to HandlerLabel if the load /// faults. The FAULTING_LOAD_OP instruction is inserted at the end of MBB. MachineInstr *ImplicitNullChecks::insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB, MCSymbol *HandlerLabel) { const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for // all targets. DebugLoc DL; unsigned NumDefs = LoadMI->getDesc().getNumDefs(); assert(NumDefs <= 1 && "other cases unhandled!"); unsigned DefReg = NoRegister; if (NumDefs != 0) { DefReg = LoadMI->defs().begin()->getReg(); assert(std::distance(LoadMI->defs().begin(), LoadMI->defs().end()) == 1 && "expected exactly one def!"); } auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_LOAD_OP), DefReg) .addSym(HandlerLabel) .addImm(LoadMI->getOpcode()); for (auto &MO : LoadMI->uses()) MIB.addOperand(MO); MIB.setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end()); return MIB; } /// Rewrite the null checks in NullCheckList into implicit null checks. void ImplicitNullChecks::rewriteNullChecks( ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) { DebugLoc DL; for (auto &NC : NullCheckList) { MCSymbol *HandlerLabel = MMI->getContext().createTempSymbol(); // Remove the conditional branch dependent on the null check. unsigned BranchesRemoved = TII->RemoveBranch(*NC.CheckBlock); (void)BranchesRemoved; assert(BranchesRemoved > 0 && "expected at least one branch!"); // Insert a faulting load where the conditional branch was originally. We // check earlier ensures that this bit of code motion is legal. We do not // touch the successors list for any basic block since we haven't changed // control flow, we've just made it implicit. insertFaultingLoad(NC.MemOperation, NC.CheckBlock, HandlerLabel); NC.MemOperation->eraseFromParent(); NC.CheckOperation->eraseFromParent(); // Insert an *unconditional* branch to not-null successor. TII->InsertBranch(*NC.CheckBlock, NC.NotNullSucc, nullptr, /*Cond=*/None, DL); // Emit the HandlerLabel as an EH_LABEL. BuildMI(*NC.NullSucc, NC.NullSucc->begin(), DL, TII->get(TargetOpcode::EH_LABEL)).addSym(HandlerLabel); NumImplicitNullChecks++; } } char ImplicitNullChecks::ID = 0; char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks", "Implicit null checks", false, false) INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks", "Implicit null checks", false, false)