Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/CodeGen/LiveInterval.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===-- LiveInterval.cpp - Live Interval Representation -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveRange and LiveInterval classes. Given some // numbering of each the machine instructions an interval [i, j) is said to be a // live range for register v if there is no instruction with number j' >= j // such that v is live at j' and there is no instruction with number i' < i such // that v is live at i'. In this implementation ranges can have holes, // i.e. a range might look like [1,20), [50,65), [1000,1001). Each // individual segment is represented as an instance of LiveRange::Segment, // and the whole range is represented as an instance of LiveRange. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveInterval.h" #include "RegisterCoalescer.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetRegisterInfo.h" #include <algorithm> using namespace llvm; namespace { //===----------------------------------------------------------------------===// // Implementation of various methods necessary for calculation of live ranges. // The implementation of the methods abstracts from the concrete type of the // segment collection. // // Implementation of the class follows the Template design pattern. The base // class contains generic algorithms that call collection-specific methods, // which are provided in concrete subclasses. In order to avoid virtual calls // these methods are provided by means of C++ template instantiation. // The base class calls the methods of the subclass through method impl(), // which casts 'this' pointer to the type of the subclass. // //===----------------------------------------------------------------------===// template <typename ImplT, typename IteratorT, typename CollectionT> class CalcLiveRangeUtilBase { protected: LiveRange *LR; protected: CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} public: typedef LiveRange::Segment Segment; typedef IteratorT iterator; VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) { assert(!Def.isDead() && "Cannot define a value at the dead slot"); iterator I = impl().find(Def); if (I == segments().end()) { VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator); impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); return VNI; } Segment *S = segmentAt(I); if (SlotIndex::isSameInstr(Def, S->start)) { assert(S->valno->def == S->start && "Inconsistent existing value def"); // It is possible to have both normal and early-clobber defs of the same // register on an instruction. It doesn't make a lot of sense, but it is // possible to specify in inline assembly. // // Just convert everything to early-clobber. Def = std::min(Def, S->start); if (Def != S->start) S->start = S->valno->def = Def; return S->valno; } assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def"); VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator); segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); return VNI; } VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) { if (segments().empty()) return nullptr; iterator I = impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr)); if (I == segments().begin()) return nullptr; --I; if (I->end <= StartIdx) return nullptr; if (I->end < Use) extendSegmentEndTo(I, Use); return I->valno; } /// This method is used when we want to extend the segment specified /// by I to end at the specified endpoint. To do this, we should /// merge and eliminate all segments that this will overlap /// with. The iterator is not invalidated. void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { assert(I != segments().end() && "Not a valid segment!"); Segment *S = segmentAt(I); VNInfo *ValNo = I->valno; // Search for the first segment that we can't merge with. iterator MergeTo = std::next(I); for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); // If NewEnd was in the middle of a segment, make sure to get its endpoint. S->end = std::max(NewEnd, std::prev(MergeTo)->end); // If the newly formed segment now touches the segment after it and if they // have the same value number, merge the two segments into one segment. if (MergeTo != segments().end() && MergeTo->start <= I->end && MergeTo->valno == ValNo) { S->end = MergeTo->end; ++MergeTo; } // Erase any dead segments. segments().erase(std::next(I), MergeTo); } /// This method is used when we want to extend the segment specified /// by I to start at the specified endpoint. To do this, we should /// merge and eliminate all segments that this will overlap with. iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { assert(I != segments().end() && "Not a valid segment!"); Segment *S = segmentAt(I); VNInfo *ValNo = I->valno; // Search for the first segment that we can't merge with. iterator MergeTo = I; do { if (MergeTo == segments().begin()) { S->start = NewStart; segments().erase(MergeTo, I); return I; } assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); --MergeTo; } while (NewStart <= MergeTo->start); // If we start in the middle of another segment, just delete a range and // extend that segment. if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { segmentAt(MergeTo)->end = S->end; } else { // Otherwise, extend the segment right after. ++MergeTo; Segment *MergeToSeg = segmentAt(MergeTo); MergeToSeg->start = NewStart; MergeToSeg->end = S->end; } segments().erase(std::next(MergeTo), std::next(I)); return MergeTo; } iterator addSegment(Segment S) { SlotIndex Start = S.start, End = S.end; iterator I = impl().findInsertPos(S); // If the inserted segment starts in the middle or right at the end of // another segment, just extend that segment to contain the segment of S. if (I != segments().begin()) { iterator B = std::prev(I); if (S.valno == B->valno) { if (B->start <= Start && B->end >= Start) { extendSegmentEndTo(B, End); return B; } } else { // Check to make sure that we are not overlapping two live segments with // different valno's. assert(B->end <= Start && "Cannot overlap two segments with differing ValID's" " (did you def the same reg twice in a MachineInstr?)"); } } // Otherwise, if this segment ends in the middle of, or right next // to, another segment, merge it into that segment. if (I != segments().end()) { if (S.valno == I->valno) { if (I->start <= End) { I = extendSegmentStartTo(I, Start); // If S is a complete superset of a segment, we may need to grow its // endpoint as well. if (End > I->end) extendSegmentEndTo(I, End); return I; } } else { // Check to make sure that we are not overlapping two live segments with // different valno's. assert(I->start >= End && "Cannot overlap two segments with differing ValID's"); } } // Otherwise, this is just a new segment that doesn't interact with // anything. // Insert it. return segments().insert(I, S); } private: ImplT &impl() { return *static_cast<ImplT *>(this); } CollectionT &segments() { return impl().segmentsColl(); } Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } }; //===----------------------------------------------------------------------===// // Instantiation of the methods for calculation of live ranges // based on a segment vector. //===----------------------------------------------------------------------===// class CalcLiveRangeUtilVector; typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, LiveRange::Segments> CalcLiveRangeUtilVectorBase; class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { public: CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} private: friend CalcLiveRangeUtilVectorBase; LiveRange::Segments &segmentsColl() { return LR->segments; } void insertAtEnd(const Segment &S) { LR->segments.push_back(S); } iterator find(SlotIndex Pos) { return LR->find(Pos); } iterator findInsertPos(Segment S) { return std::upper_bound(LR->begin(), LR->end(), S.start); } }; //===----------------------------------------------------------------------===// // Instantiation of the methods for calculation of live ranges // based on a segment set. //===----------------------------------------------------------------------===// class CalcLiveRangeUtilSet; typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator, LiveRange::SegmentSet> CalcLiveRangeUtilSetBase; class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { public: CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} private: friend CalcLiveRangeUtilSetBase; LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } void insertAtEnd(const Segment &S) { LR->segmentSet->insert(LR->segmentSet->end(), S); } iterator find(SlotIndex Pos) { iterator I = LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr)); if (I == LR->segmentSet->begin()) return I; iterator PrevI = std::prev(I); if (Pos < (*PrevI).end) return PrevI; return I; } iterator findInsertPos(Segment S) { iterator I = LR->segmentSet->upper_bound(S); if (I != LR->segmentSet->end() && !(S.start < *I)) ++I; return I; } }; } // namespace //===----------------------------------------------------------------------===// // LiveRange methods //===----------------------------------------------------------------------===// LiveRange::iterator LiveRange::find(SlotIndex Pos) { // This algorithm is basically std::upper_bound. // Unfortunately, std::upper_bound cannot be used with mixed types until we // adopt C++0x. Many libraries can do it, but not all. if (empty() || Pos >= endIndex()) return end(); iterator I = begin(); size_t Len = size(); do { size_t Mid = Len >> 1; if (Pos < I[Mid].end) Len = Mid; else I += Mid + 1, Len -= Mid + 1; } while (Len); return I; } VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) { // Use the segment set, if it is available. if (segmentSet != nullptr) return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator); // Otherwise use the segment vector. return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator); } // overlaps - Return true if the intersection of the two live ranges is // not empty. // // An example for overlaps(): // // 0: A = ... // 4: B = ... // 8: C = A + B ;; last use of A // // The live ranges should look like: // // A = [3, 11) // B = [7, x) // C = [11, y) // // A->overlaps(C) should return false since we want to be able to join // A and C. // bool LiveRange::overlapsFrom(const LiveRange& other, const_iterator StartPos) const { assert(!empty() && "empty range"); const_iterator i = begin(); const_iterator ie = end(); const_iterator j = StartPos; const_iterator je = other.end(); assert((StartPos->start <= i->start || StartPos == other.begin()) && StartPos != other.end() && "Bogus start position hint!"); if (i->start < j->start) { i = std::upper_bound(i, ie, j->start); if (i != begin()) --i; } else if (j->start < i->start) { ++StartPos; if (StartPos != other.end() && StartPos->start <= i->start) { assert(StartPos < other.end() && i < end()); j = std::upper_bound(j, je, i->start); if (j != other.begin()) --j; } } else { return true; } if (j == je) return false; while (i != ie) { if (i->start > j->start) { std::swap(i, j); std::swap(ie, je); } if (i->end > j->start) return true; ++i; } return false; } bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, const SlotIndexes &Indexes) const { assert(!empty() && "empty range"); if (Other.empty()) return false; // Use binary searches to find initial positions. const_iterator I = find(Other.beginIndex()); const_iterator IE = end(); if (I == IE) return false; const_iterator J = Other.find(I->start); const_iterator JE = Other.end(); if (J == JE) return false; for (;;) { // J has just been advanced to satisfy: assert(J->end >= I->start); // Check for an overlap. if (J->start < I->end) { // I and J are overlapping. Find the later start. SlotIndex Def = std::max(I->start, J->start); // Allow the overlap if Def is a coalescable copy. if (Def.isBlock() || !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) return true; } // Advance the iterator that ends first to check for more overlaps. if (J->end > I->end) { std::swap(I, J); std::swap(IE, JE); } // Advance J until J->end >= I->start. do if (++J == JE) return false; while (J->end < I->start); } } /// overlaps - Return true if the live range overlaps an interval specified /// by [Start, End). bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { assert(Start < End && "Invalid range"); const_iterator I = std::lower_bound(begin(), end(), End); return I != begin() && (--I)->end > Start; } bool LiveRange::covers(const LiveRange &Other) const { if (empty()) return Other.empty(); const_iterator I = begin(); for (const Segment &O : Other.segments) { I = advanceTo(I, O.start); if (I == end() || I->start > O.start) return false; // Check adjacent live segments and see if we can get behind O.end. while (I->end < O.end) { const_iterator Last = I; // Get next segment and abort if it was not adjacent. ++I; if (I == end() || Last->end != I->start) return false; } } return true; } /// ValNo is dead, remove it. If it is the largest value number, just nuke it /// (and any other deleted values neighboring it), otherwise mark it as ~1U so /// it can be nuked later. void LiveRange::markValNoForDeletion(VNInfo *ValNo) { if (ValNo->id == getNumValNums()-1) { do { valnos.pop_back(); } while (!valnos.empty() && valnos.back()->isUnused()); } else { ValNo->markUnused(); } } /// RenumberValues - Renumber all values in order of appearance and delete the /// remaining unused values. void LiveRange::RenumberValues() { SmallPtrSet<VNInfo*, 8> Seen; valnos.clear(); for (const Segment &S : segments) { VNInfo *VNI = S.valno; if (!Seen.insert(VNI).second) continue; assert(!VNI->isUnused() && "Unused valno used by live segment"); VNI->id = (unsigned)valnos.size(); valnos.push_back(VNI); } } void LiveRange::addSegmentToSet(Segment S) { CalcLiveRangeUtilSet(this).addSegment(S); } LiveRange::iterator LiveRange::addSegment(Segment S) { // Use the segment set, if it is available. if (segmentSet != nullptr) { addSegmentToSet(S); return end(); } // Otherwise use the segment vector. return CalcLiveRangeUtilVector(this).addSegment(S); } void LiveRange::append(const Segment S) { // Check that the segment belongs to the back of the list. assert(segments.empty() || segments.back().end <= S.start); segments.push_back(S); } /// extendInBlock - If this range is live before Kill in the basic /// block that starts at StartIdx, extend it to be live up to Kill and return /// the value. If there is no live range before Kill, return NULL. VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { // Use the segment set, if it is available. if (segmentSet != nullptr) return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill); // Otherwise use the segment vector. return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill); } /// Remove the specified segment from this range. Note that the segment must /// be in a single Segment in its entirety. void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo) { // Find the Segment containing this span. iterator I = find(Start); assert(I != end() && "Segment is not in range!"); assert(I->containsInterval(Start, End) && "Segment is not entirely in range!"); // If the span we are removing is at the start of the Segment, adjust it. VNInfo *ValNo = I->valno; if (I->start == Start) { if (I->end == End) { if (RemoveDeadValNo) { // Check if val# is dead. bool isDead = true; for (const_iterator II = begin(), EE = end(); II != EE; ++II) if (II != I && II->valno == ValNo) { isDead = false; break; } if (isDead) { // Now that ValNo is dead, remove it. markValNoForDeletion(ValNo); } } segments.erase(I); // Removed the whole Segment. } else I->start = End; return; } // Otherwise if the span we are removing is at the end of the Segment, // adjust the other way. if (I->end == End) { I->end = Start; return; } // Otherwise, we are splitting the Segment into two pieces. SlotIndex OldEnd = I->end; I->end = Start; // Trim the old segment. // Insert the new one. segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); } /// removeValNo - Remove all the segments defined by the specified value#. /// Also remove the value# from value# list. void LiveRange::removeValNo(VNInfo *ValNo) { if (empty()) return; segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) { return S.valno == ValNo; }), end()); // Now that ValNo is dead, remove it. markValNoForDeletion(ValNo); } void LiveRange::join(LiveRange &Other, const int *LHSValNoAssignments, const int *RHSValNoAssignments, SmallVectorImpl<VNInfo *> &NewVNInfo) { verify(); // Determine if any of our values are mapped. This is uncommon, so we want // to avoid the range scan if not. bool MustMapCurValNos = false; unsigned NumVals = getNumValNums(); unsigned NumNewVals = NewVNInfo.size(); for (unsigned i = 0; i != NumVals; ++i) { unsigned LHSValID = LHSValNoAssignments[i]; if (i != LHSValID || (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { MustMapCurValNos = true; break; } } // If we have to apply a mapping to our base range assignment, rewrite it now. if (MustMapCurValNos && !empty()) { // Map the first live range. iterator OutIt = begin(); OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; assert(nextValNo && "Huh?"); // If this live range has the same value # as its immediate predecessor, // and if they are neighbors, remove one Segment. This happens when we // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. if (OutIt->valno == nextValNo && OutIt->end == I->start) { OutIt->end = I->end; } else { // Didn't merge. Move OutIt to the next segment, ++OutIt; OutIt->valno = nextValNo; if (OutIt != I) { OutIt->start = I->start; OutIt->end = I->end; } } } // If we merge some segments, chop off the end. ++OutIt; segments.erase(OutIt, end()); } // Rewrite Other values before changing the VNInfo ids. // This can leave Other in an invalid state because we're not coalescing // touching segments that now have identical values. That's OK since Other is // not supposed to be valid after calling join(); for (Segment &S : Other.segments) S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; // Update val# info. Renumber them and make sure they all belong to this // LiveRange now. Also remove dead val#'s. unsigned NumValNos = 0; for (unsigned i = 0; i < NumNewVals; ++i) { VNInfo *VNI = NewVNInfo[i]; if (VNI) { if (NumValNos >= NumVals) valnos.push_back(VNI); else valnos[NumValNos] = VNI; VNI->id = NumValNos++; // Renumber val#. } } if (NumNewVals < NumVals) valnos.resize(NumNewVals); // shrinkify // Okay, now insert the RHS live segments into the LHS. LiveRangeUpdater Updater(this); for (Segment &S : Other.segments) Updater.add(S); } /// Merge all of the segments in RHS into this live range as the specified /// value number. The segments in RHS are allowed to overlap with segments in /// the current range, but only if the overlapping segments have the /// specified value number. void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo) { LiveRangeUpdater Updater(this); for (const Segment &S : RHS.segments) Updater.add(S.start, S.end, LHSValNo); } /// MergeValueInAsValue - Merge all of the live segments of a specific val# /// in RHS into this live range as the specified value number. /// The segments in RHS are allowed to overlap with segments in the /// current range, it will replace the value numbers of the overlaped /// segments with the specified value number. void LiveRange::MergeValueInAsValue(const LiveRange &RHS, const VNInfo *RHSValNo, VNInfo *LHSValNo) { LiveRangeUpdater Updater(this); for (const Segment &S : RHS.segments) if (S.valno == RHSValNo) Updater.add(S.start, S.end, LHSValNo); } /// MergeValueNumberInto - This method is called when two value nubmers /// are found to be equivalent. This eliminates V1, replacing all /// segments with the V1 value number with the V2 value number. This can /// cause merging of V1/V2 values numbers and compaction of the value space. VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { assert(V1 != V2 && "Identical value#'s are always equivalent!"); // This code actually merges the (numerically) larger value number into the // smaller value number, which is likely to allow us to compactify the value // space. The only thing we have to be careful of is to preserve the // instruction that defines the result value. // Make sure V2 is smaller than V1. if (V1->id < V2->id) { V1->copyFrom(*V2); std::swap(V1, V2); } // Merge V1 segments into V2. for (iterator I = begin(); I != end(); ) { iterator S = I++; if (S->valno != V1) continue; // Not a V1 Segment. // Okay, we found a V1 live range. If it had a previous, touching, V2 live // range, extend it. if (S != begin()) { iterator Prev = S-1; if (Prev->valno == V2 && Prev->end == S->start) { Prev->end = S->end; // Erase this live-range. segments.erase(S); I = Prev+1; S = Prev; } } // Okay, now we have a V1 or V2 live range that is maximally merged forward. // Ensure that it is a V2 live-range. S->valno = V2; // If we can merge it into later V2 segments, do so now. We ignore any // following V1 segments, as they will be merged in subsequent iterations // of the loop. if (I != end()) { if (I->start == S->end && I->valno == V2) { S->end = I->end; segments.erase(I); I = S+1; } } } // Now that V1 is dead, remove it. markValNoForDeletion(V1); return V2; } void LiveRange::flushSegmentSet() { assert(segmentSet != nullptr && "segment set must have been created"); assert( segments.empty() && "segment set can be used only initially before switching to the array"); segments.append(segmentSet->begin(), segmentSet->end()); segmentSet = nullptr; verify(); } void LiveInterval::freeSubRange(SubRange *S) { S->~SubRange(); // Memory was allocated with BumpPtr allocator and is not freed here. } void LiveInterval::removeEmptySubRanges() { SubRange **NextPtr = &SubRanges; SubRange *I = *NextPtr; while (I != nullptr) { if (!I->empty()) { NextPtr = &I->Next; I = *NextPtr; continue; } // Skip empty subranges until we find the first nonempty one. do { SubRange *Next = I->Next; freeSubRange(I); I = Next; } while (I != nullptr && I->empty()); *NextPtr = I; } } void LiveInterval::clearSubRanges() { for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { Next = I->Next; freeSubRange(I); } SubRanges = nullptr; } /// Helper function for constructMainRangeFromSubranges(): Search the CFG /// backwards until we find a place covered by a LiveRange segment that actually /// has a valno set. static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR, const MachineBasicBlock *MBB, SmallPtrSetImpl<const MachineBasicBlock*> &Visited) { // We start the search at the end of MBB. SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB); // In our use case we can't live the area covered by the live segments without // finding an actual VNI def. LiveRange::iterator I = LR.find(EndIdx.getPrevSlot()); assert(I != LR.end()); LiveRange::Segment &S = *I; if (S.valno != nullptr) return S.valno; VNInfo *VNI = nullptr; // Continue at predecessors (we could even go to idom with domtree available). for (const MachineBasicBlock *Pred : MBB->predecessors()) { // Avoid going in circles. if (!Visited.insert(Pred).second) continue; VNI = searchForVNI(Indexes, LR, Pred, Visited); if (VNI != nullptr) { S.valno = VNI; break; } } return VNI; } static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) { SmallPtrSet<const MachineBasicBlock*, 5> Visited; LiveRange::iterator OutIt; VNInfo *PrevValNo = nullptr; for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { LiveRange::Segment &S = *I; // Determine final VNI if necessary. if (S.valno == nullptr) { // This can only happen at the begin of a basic block. assert(S.start.isBlock() && "valno should only be missing at block begin"); Visited.clear(); const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start); for (const MachineBasicBlock *Pred : MBB->predecessors()) { VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited); if (VNI != nullptr) { S.valno = VNI; break; } } assert(S.valno != nullptr && "could not determine valno"); } // Merge with previous segment if it has the same VNI. if (PrevValNo == S.valno && OutIt->end == S.start) { OutIt->end = S.end; } else { // Didn't merge. Move OutIt to next segment. if (PrevValNo == nullptr) OutIt = LI.begin(); else ++OutIt; if (OutIt != I) *OutIt = *I; PrevValNo = S.valno; } } // If we merged some segments chop off the end. ++OutIt; LI.segments.erase(OutIt, LI.end()); } void LiveInterval::constructMainRangeFromSubranges( const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) { // The basic observations on which this algorithm is based: // - Each Def/ValNo in a subrange must have a corresponding def on the main // range, but not further defs/valnos are necessary. // - If any of the subranges is live at a point the main liverange has to be // live too, conversily if no subrange is live the main range mustn't be // live either. // We do this by scanning through all the subranges simultaneously creating new // segments in the main range as segments start/ends come up in the subranges. assert(hasSubRanges() && "expected subranges to be present"); assert(segments.empty() && valnos.empty() && "expected empty main range"); // Collect subrange, iterator pairs for the walk and determine first and last // SlotIndex involved. SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs; SlotIndex First; SlotIndex Last; for (const SubRange &SR : subranges()) { if (SR.empty()) continue; SRs.push_back(std::make_pair(&SR, SR.begin())); if (!First.isValid() || SR.segments.front().start < First) First = SR.segments.front().start; if (!Last.isValid() || SR.segments.back().end > Last) Last = SR.segments.back().end; } // Walk over all subranges simultaneously. Segment CurrentSegment; bool ConstructingSegment = false; bool NeedVNIFixup = false; LaneBitmask ActiveMask = 0; SlotIndex Pos = First; while (true) { SlotIndex NextPos = Last; enum { NOTHING, BEGIN_SEGMENT, END_SEGMENT, } Event = NOTHING; // Which subregister lanes are affected by the current event. LaneBitmask EventMask = 0; // Whether a BEGIN_SEGMENT is also a valno definition point. bool IsDef = false; // Find the next begin or end of a subrange segment. Combine masks if we // have multiple begins/ends at the same position. Ends take precedence over // Begins. for (auto &SRP : SRs) { const SubRange &SR = *SRP.first; const_iterator &I = SRP.second; // Advance iterator of subrange to a segment involving Pos; the earlier // segments are already merged at this point. while (I != SR.end() && (I->end < Pos || (I->end == Pos && (ActiveMask & SR.LaneMask) == 0))) ++I; if (I == SR.end()) continue; if ((ActiveMask & SR.LaneMask) == 0 && Pos <= I->start && I->start <= NextPos) { // Merge multiple begins at the same position. if (I->start == NextPos && Event == BEGIN_SEGMENT) { EventMask |= SR.LaneMask; IsDef |= I->valno->def == I->start; } else if (I->start < NextPos || Event != END_SEGMENT) { Event = BEGIN_SEGMENT; NextPos = I->start; EventMask = SR.LaneMask; IsDef = I->valno->def == I->start; } } if ((ActiveMask & SR.LaneMask) != 0 && Pos <= I->end && I->end <= NextPos) { // Merge multiple ends at the same position. if (I->end == NextPos && Event == END_SEGMENT) EventMask |= SR.LaneMask; else { Event = END_SEGMENT; NextPos = I->end; EventMask = SR.LaneMask; } } } // Advance scan position. Pos = NextPos; if (Event == BEGIN_SEGMENT) { if (ConstructingSegment && IsDef) { // Finish previous segment because we have to start a new one. CurrentSegment.end = Pos; append(CurrentSegment); ConstructingSegment = false; } // Start a new segment if necessary. if (!ConstructingSegment) { // Determine value number for the segment. VNInfo *VNI; if (IsDef) { VNI = getNextValue(Pos, VNIAllocator); } else { // We have to reuse an existing value number, if we are lucky // then we already passed one of the predecessor blocks and determined // its value number (with blocks in reverse postorder this would be // always true but we have no such guarantee). assert(Pos.isBlock()); const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos); // See if any of the predecessor blocks has a lower number and a VNI for (const MachineBasicBlock *Pred : MBB->predecessors()) { SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); VNI = getVNInfoBefore(PredEnd); if (VNI != nullptr) break; } // Def will come later: We have to do an extra fixup pass. if (VNI == nullptr) NeedVNIFixup = true; } // In rare cases we can produce adjacent segments with the same value // number (if they come from different subranges, but happen to have // the same defining instruction). VNIFixup will fix those cases. if (!empty() && segments.back().end == Pos && segments.back().valno == VNI) NeedVNIFixup = true; CurrentSegment.start = Pos; CurrentSegment.valno = VNI; ConstructingSegment = true; } ActiveMask |= EventMask; } else if (Event == END_SEGMENT) { assert(ConstructingSegment); // Finish segment if no lane is active anymore. ActiveMask &= ~EventMask; if (ActiveMask == 0) { CurrentSegment.end = Pos; append(CurrentSegment); ConstructingSegment = false; } } else { // We reached the end of the last subranges and can stop. assert(Event == NOTHING); break; } } // We might not be able to assign new valnos for all segments if the basic // block containing the definition comes after a segment using the valno. // Do a fixup pass for this uncommon case. if (NeedVNIFixup) determineMissingVNIs(Indexes, *this); assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended"); verify(); } unsigned LiveInterval::getSize() const { unsigned Sum = 0; for (const Segment &S : segments) Sum += S.start.distance(S.end); return Sum; } raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) { return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")"; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void LiveRange::Segment::dump() const { dbgs() << *this << "\n"; } #endif void LiveRange::print(raw_ostream &OS) const { if (empty()) OS << "EMPTY"; else { for (const Segment &S : segments) { OS << S; assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); } } // Print value number info. if (getNumValNums()) { OS << " "; unsigned vnum = 0; for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; ++i, ++vnum) { const VNInfo *vni = *i; if (vnum) OS << " "; OS << vnum << "@"; if (vni->isUnused()) { OS << "x"; } else { OS << vni->def; if (vni->isPHIDef()) OS << "-phi"; } } } } void LiveInterval::print(raw_ostream &OS) const { OS << PrintReg(reg) << ' '; super::print(OS); // Print subranges for (const SubRange &SR : subranges()) { OS << " L" << PrintLaneMask(SR.LaneMask) << ' ' << SR; } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void LiveRange::dump() const { dbgs() << *this << "\n"; } void LiveInterval::dump() const { dbgs() << *this << "\n"; } #endif #ifndef NDEBUG void LiveRange::verify() const { for (const_iterator I = begin(), E = end(); I != E; ++I) { assert(I->start.isValid()); assert(I->end.isValid()); assert(I->start < I->end); assert(I->valno != nullptr); assert(I->valno->id < valnos.size()); assert(I->valno == valnos[I->valno->id]); if (std::next(I) != E) { assert(I->end <= std::next(I)->start); if (I->end == std::next(I)->start) assert(I->valno != std::next(I)->valno); } } } void LiveInterval::verify(const MachineRegisterInfo *MRI) const { super::verify(); // Make sure SubRanges are fine and LaneMasks are disjunct. LaneBitmask Mask = 0; LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u; for (const SubRange &SR : subranges()) { // Subrange lanemask should be disjunct to any previous subrange masks. assert((Mask & SR.LaneMask) == 0); Mask |= SR.LaneMask; // subrange mask should not contained in maximum lane mask for the vreg. assert((Mask & ~MaxMask) == 0); // empty subranges must be removed. assert(!SR.empty()); SR.verify(); // Main liverange should cover subrange. assert(covers(SR)); } } #endif //===----------------------------------------------------------------------===// // LiveRangeUpdater class //===----------------------------------------------------------------------===// // // The LiveRangeUpdater class always maintains these invariants: // // - When LastStart is invalid, Spills is empty and the iterators are invalid. // This is the initial state, and the state created by flush(). // In this state, isDirty() returns false. // // Otherwise, segments are kept in three separate areas: // // 1. [begin; WriteI) at the front of LR. // 2. [ReadI; end) at the back of LR. // 3. Spills. // // - LR.begin() <= WriteI <= ReadI <= LR.end(). // - Segments in all three areas are fully ordered and coalesced. // - Segments in area 1 precede and can't coalesce with segments in area 2. // - Segments in Spills precede and can't coalesce with segments in area 2. // - No coalescing is possible between segments in Spills and segments in area // 1, and there are no overlapping segments. // // The segments in Spills are not ordered with respect to the segments in area // 1. They need to be merged. // // When they exist, Spills.back().start <= LastStart, // and WriteI[-1].start <= LastStart. void LiveRangeUpdater::print(raw_ostream &OS) const { if (!isDirty()) { if (LR) OS << "Clean updater: " << *LR << '\n'; else OS << "Null updater.\n"; return; } assert(LR && "Can't have null LR in dirty updater."); OS << " updater with gap = " << (ReadI - WriteI) << ", last start = " << LastStart << ":\n Area 1:"; for (const auto &S : make_range(LR->begin(), WriteI)) OS << ' ' << S; OS << "\n Spills:"; for (unsigned I = 0, E = Spills.size(); I != E; ++I) OS << ' ' << Spills[I]; OS << "\n Area 2:"; for (const auto &S : make_range(ReadI, LR->end())) OS << ' ' << S; OS << '\n'; } void LiveRangeUpdater::dump() const { print(errs()); } // Determine if A and B should be coalesced. static inline bool coalescable(const LiveRange::Segment &A, const LiveRange::Segment &B) { assert(A.start <= B.start && "Unordered live segments."); if (A.end == B.start) return A.valno == B.valno; if (A.end < B.start) return false; assert(A.valno == B.valno && "Cannot overlap different values"); return true; } void LiveRangeUpdater::add(LiveRange::Segment Seg) { assert(LR && "Cannot add to a null destination"); // Fall back to the regular add method if the live range // is using the segment set instead of the segment vector. if (LR->segmentSet != nullptr) { LR->addSegmentToSet(Seg); return; } // Flush the state if Start moves backwards. if (!LastStart.isValid() || LastStart > Seg.start) { if (isDirty()) flush(); // This brings us to an uninitialized state. Reinitialize. assert(Spills.empty() && "Leftover spilled segments"); WriteI = ReadI = LR->begin(); } // Remember start for next time. LastStart = Seg.start; // Advance ReadI until it ends after Seg.start. LiveRange::iterator E = LR->end(); if (ReadI != E && ReadI->end <= Seg.start) { // First try to close the gap between WriteI and ReadI with spills. if (ReadI != WriteI) mergeSpills(); // Then advance ReadI. if (ReadI == WriteI) ReadI = WriteI = LR->find(Seg.start); else while (ReadI != E && ReadI->end <= Seg.start) *WriteI++ = *ReadI++; } assert(ReadI == E || ReadI->end > Seg.start); // Check if the ReadI segment begins early. if (ReadI != E && ReadI->start <= Seg.start) { assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); // Bail if Seg is completely contained in ReadI. if (ReadI->end >= Seg.end) return; // Coalesce into Seg. Seg.start = ReadI->start; ++ReadI; } // Coalesce as much as possible from ReadI into Seg. while (ReadI != E && coalescable(Seg, *ReadI)) { Seg.end = std::max(Seg.end, ReadI->end); ++ReadI; } // Try coalescing Spills.back() into Seg. if (!Spills.empty() && coalescable(Spills.back(), Seg)) { Seg.start = Spills.back().start; Seg.end = std::max(Spills.back().end, Seg.end); Spills.pop_back(); } // Try coalescing Seg into WriteI[-1]. if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); return; } // Seg doesn't coalesce with anything, and needs to be inserted somewhere. if (WriteI != ReadI) { *WriteI++ = Seg; return; } // Finally, append to LR or Spills. if (WriteI == E) { LR->segments.push_back(Seg); WriteI = ReadI = LR->end(); } else Spills.push_back(Seg); } // Merge as many spilled segments as possible into the gap between WriteI // and ReadI. Advance WriteI to reflect the inserted instructions. void LiveRangeUpdater::mergeSpills() { // Perform a backwards merge of Spills and [SpillI;WriteI). size_t GapSize = ReadI - WriteI; size_t NumMoved = std::min(Spills.size(), GapSize); LiveRange::iterator Src = WriteI; LiveRange::iterator Dst = Src + NumMoved; LiveRange::iterator SpillSrc = Spills.end(); LiveRange::iterator B = LR->begin(); // This is the new WriteI position after merging spills. WriteI = Dst; // Now merge Src and Spills backwards. while (Src != Dst) { if (Src != B && Src[-1].start > SpillSrc[-1].start) *--Dst = *--Src; else *--Dst = *--SpillSrc; } assert(NumMoved == size_t(Spills.end() - SpillSrc)); Spills.erase(SpillSrc, Spills.end()); } void LiveRangeUpdater::flush() { if (!isDirty()) return; // Clear the dirty state. LastStart = SlotIndex(); assert(LR && "Cannot add to a null destination"); // Nothing to merge? if (Spills.empty()) { LR->segments.erase(WriteI, ReadI); LR->verify(); return; } // Resize the WriteI - ReadI gap to match Spills. size_t GapSize = ReadI - WriteI; if (GapSize < Spills.size()) { // The gap is too small. Make some room. size_t WritePos = WriteI - LR->begin(); LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); // This also invalidated ReadI, but it is recomputed below. WriteI = LR->begin() + WritePos; } else { // Shrink the gap if necessary. LR->segments.erase(WriteI + Spills.size(), ReadI); } ReadI = WriteI + Spills.size(); mergeSpills(); LR->verify(); } unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) { // Create initial equivalence classes. EqClass.clear(); EqClass.grow(LR.getNumValNums()); const VNInfo *used = nullptr, *unused = nullptr; // Determine connections. for (const VNInfo *VNI : LR.valnos) { // Group all unused values into one class. if (VNI->isUnused()) { if (unused) EqClass.join(unused->id, VNI->id); unused = VNI; continue; } used = VNI; if (VNI->isPHIDef()) { const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); assert(MBB && "Phi-def has no defining MBB"); // Connect to values live out of predecessors. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI))) EqClass.join(VNI->id, PVNI->id); } else { // Normal value defined by an instruction. Check for two-addr redef. // FIXME: This could be coincidental. Should we really check for a tied // operand constraint? // Note that VNI->def may be a use slot for an early clobber def. if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def)) EqClass.join(VNI->id, UVNI->id); } } // Lump all the unused values in with the last used value. if (used && unused) EqClass.join(used->id, unused->id); EqClass.compress(); return EqClass.getNumClasses(); } template<typename LiveRangeT, typename EqClassesT> static void DistributeRange(LiveRangeT &LR, LiveRangeT *SplitLRs[], EqClassesT VNIClasses) { // Move segments to new intervals. LiveRange::iterator J = LR.begin(), E = LR.end(); while (J != E && VNIClasses[J->valno->id] == 0) ++J; for (LiveRange::iterator I = J; I != E; ++I) { if (unsigned eq = VNIClasses[I->valno->id]) { assert((SplitLRs[eq-1]->empty() || SplitLRs[eq-1]->expiredAt(I->start)) && "New intervals should be empty"); SplitLRs[eq-1]->segments.push_back(*I); } else *J++ = *I; } LR.segments.erase(J, E); // Transfer VNInfos to their new owners and renumber them. unsigned j = 0, e = LR.getNumValNums(); while (j != e && VNIClasses[j] == 0) ++j; for (unsigned i = j; i != e; ++i) { VNInfo *VNI = LR.getValNumInfo(i); if (unsigned eq = VNIClasses[i]) { VNI->id = SplitLRs[eq-1]->getNumValNums(); SplitLRs[eq-1]->valnos.push_back(VNI); } else { VNI->id = j; LR.valnos[j++] = VNI; } } LR.valnos.resize(j); } void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[], MachineRegisterInfo &MRI) { // Rewrite instructions. for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), RE = MRI.reg_end(); RI != RE;) { MachineOperand &MO = *RI; MachineInstr *MI = RI->getParent(); ++RI; // DBG_VALUE instructions don't have slot indexes, so get the index of the // instruction before them. // Normally, DBG_VALUE instructions are removed before this function is // called, but it is not a requirement. SlotIndex Idx; if (MI->isDebugValue()) Idx = LIS.getSlotIndexes()->getIndexBefore(MI); else Idx = LIS.getInstructionIndex(MI); LiveQueryResult LRQ = LI.Query(Idx); const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); // In the case of an <undef> use that isn't tied to any def, VNI will be // NULL. If the use is tied to a def, VNI will be the defined value. if (!VNI) continue; if (unsigned EqClass = getEqClass(VNI)) MO.setReg(LIV[EqClass-1]->reg); } // Distribute subregister liveranges. if (LI.hasSubRanges()) { unsigned NumComponents = EqClass.getNumClasses(); SmallVector<unsigned, 8> VNIMapping; SmallVector<LiveInterval::SubRange*, 8> SubRanges; BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); for (LiveInterval::SubRange &SR : LI.subranges()) { // Create new subranges in the split intervals and construct a mapping // for the VNInfos in the subrange. unsigned NumValNos = SR.valnos.size(); VNIMapping.clear(); VNIMapping.reserve(NumValNos); SubRanges.clear(); SubRanges.resize(NumComponents-1, nullptr); for (unsigned I = 0; I < NumValNos; ++I) { const VNInfo &VNI = *SR.valnos[I]; const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def); assert(MainRangeVNI != nullptr && "SubRange def must have corresponding main range def"); unsigned ComponentNum = getEqClass(MainRangeVNI); VNIMapping.push_back(ComponentNum); if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) { SubRanges[ComponentNum-1] = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask); } } DistributeRange(SR, SubRanges.data(), VNIMapping); } LI.removeEmptySubRanges(); } // Distribute main liverange. DistributeRange(LI, LIV, EqClass); } void ConnectedSubRegClasses::renameComponents(LiveInterval &LI) const { // Shortcut: We cannot have split components with a single definition. if (LI.valnos.size() < 2) return; SmallVector<SubRangeInfo, 4> SubRangeInfos; IntEqClasses Classes; if (!findComponents(Classes, SubRangeInfos, LI)) return; // Create a new VReg for each class. unsigned Reg = LI.reg; const TargetRegisterClass *RegClass = MRI.getRegClass(Reg); SmallVector<LiveInterval*, 4> Intervals; Intervals.push_back(&LI); for (unsigned I = 1, NumClasses = Classes.getNumClasses(); I < NumClasses; ++I) { unsigned NewVReg = MRI.createVirtualRegister(RegClass); LiveInterval &NewLI = LIS.createEmptyInterval(NewVReg); Intervals.push_back(&NewLI); } rewriteOperands(Classes, SubRangeInfos, Intervals); distribute(Classes, SubRangeInfos, Intervals); computeMainRangesFixFlags(Classes, SubRangeInfos, Intervals); } bool ConnectedSubRegClasses::findComponents(IntEqClasses &Classes, SmallVectorImpl<ConnectedSubRegClasses::SubRangeInfo> &SubRangeInfos, LiveInterval &LI) const { // First step: Create connected components for the VNInfos inside the // subranges and count the global number of such components. unsigned NumComponents = 0; for (LiveInterval::SubRange &SR : LI.subranges()) { SubRangeInfos.push_back(SubRangeInfo(LIS, SR, NumComponents)); ConnectedVNInfoEqClasses &ConEQ = SubRangeInfos.back().ConEQ; unsigned NumSubComponents = ConEQ.Classify(SR); NumComponents += NumSubComponents; } // Shortcut: With only 1 subrange, the normal separate component tests are // enough and we do not need to perform the union-find on the subregister // segments. if (SubRangeInfos.size() < 2) return false; // Next step: Build union-find structure over all subranges and merge classes // across subranges when they are affected by the same MachineOperand. const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); Classes.grow(NumComponents); unsigned Reg = LI.reg; for (const MachineOperand &MO : MRI.reg_nodbg_operands(Reg)) { if (!MO.isDef() && !MO.readsReg()) continue; unsigned SubRegIdx = MO.getSubReg(); LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx); unsigned MergedID = ~0u; for (auto &SRInfo : SubRangeInfos) { const LiveInterval::SubRange &SR = *SRInfo.SR; if ((SR.LaneMask & LaneMask) == 0) continue; SlotIndex Pos = LIS.getInstructionIndex(MO.getParent()); Pos = MO.isDef() ? Pos.getRegSlot(MO.isEarlyClobber()) : Pos.getBaseIndex(); const VNInfo *VNI = SR.getVNInfoAt(Pos); if (VNI == nullptr) continue; // Map to local representant ID. unsigned LocalID = SRInfo.ConEQ.getEqClass(VNI); // Global ID unsigned ID = LocalID + SRInfo.Index; // Merge other sets MergedID = MergedID == ~0u ? ID : Classes.join(MergedID, ID); } } // Early exit if we ended up with a single equivalence class. Classes.compress(); unsigned NumClasses = Classes.getNumClasses(); return NumClasses > 1; } void ConnectedSubRegClasses::rewriteOperands(const IntEqClasses &Classes, const SmallVectorImpl<SubRangeInfo> &SubRangeInfos, const SmallVectorImpl<LiveInterval*> &Intervals) const { const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); unsigned Reg = Intervals[0]->reg;; for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(Reg), E = MRI.reg_nodbg_end(); I != E; ) { MachineOperand &MO = *I++; if (!MO.isDef() && !MO.readsReg()) continue; MachineInstr &MI = *MO.getParent(); SlotIndex Pos = LIS.getInstructionIndex(&MI); unsigned SubRegIdx = MO.getSubReg(); LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx); unsigned ID = ~0u; for (auto &SRInfo : SubRangeInfos) { const LiveInterval::SubRange &SR = *SRInfo.SR; if ((SR.LaneMask & LaneMask) == 0) continue; LiveRange::const_iterator I = SR.find(Pos); if (I == SR.end()) continue; const VNInfo &VNI = *I->valno; // Map to local representant ID. unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI); // Global ID ID = Classes[LocalID + SRInfo.Index]; break; } unsigned VReg = Intervals[ID]->reg; MO.setReg(VReg); } } void ConnectedSubRegClasses::distribute(const IntEqClasses &Classes, const SmallVectorImpl<SubRangeInfo> &SubRangeInfos, const SmallVectorImpl<LiveInterval*> &Intervals) const { unsigned NumClasses = Classes.getNumClasses(); SmallVector<unsigned, 8> VNIMapping; SmallVector<LiveInterval::SubRange*, 8> SubRanges; BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); for (auto &SRInfo : SubRangeInfos) { LiveInterval::SubRange &SR = *SRInfo.SR; unsigned NumValNos = SR.valnos.size(); VNIMapping.clear(); VNIMapping.reserve(NumValNos); SubRanges.clear(); SubRanges.resize(NumClasses-1, nullptr); for (unsigned I = 0; I < NumValNos; ++I) { const VNInfo &VNI = *SR.valnos[I]; unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI); unsigned ID = Classes[LocalID + SRInfo.Index]; VNIMapping.push_back(ID); if (ID > 0 && SubRanges[ID-1] == nullptr) SubRanges[ID-1] = Intervals[ID]->createSubRange(Allocator, SR.LaneMask); } DistributeRange(SR, SubRanges.data(), VNIMapping); } } void ConnectedSubRegClasses::computeMainRangesFixFlags( const IntEqClasses &Classes, const SmallVectorImpl<SubRangeInfo> &SubRangeInfos, const SmallVectorImpl<LiveInterval*> &Intervals) const { BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); for (size_t I = 0, E = Intervals.size(); I < E; ++I) { LiveInterval *LI = Intervals[I]; LI->removeEmptySubRanges(); if (I == 0) LI->clear(); LI->constructMainRangeFromSubranges(*LIS.getSlotIndexes(), Allocator); for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { if (!MO.isDef()) continue; unsigned SubRegIdx = MO.getSubReg(); if (SubRegIdx == 0) continue; // After assigning the new vreg we may not have any other sublanes living // in and out of the instruction anymore. We need to add new dead and kill // flags in these cases. if (!MO.isUndef()) { SlotIndex Pos = LIS.getInstructionIndex(MO.getParent()); if (!LI->liveAt(Pos.getBaseIndex())) MO.setIsUndef(); } if (!MO.isDead()) { SlotIndex Pos = LIS.getInstructionIndex(MO.getParent()); if (!LI->liveAt(Pos.getDeadSlot())) MO.setIsDead(); } } } }