Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/CodeGen/MachineDominators.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | afa8332a0e37 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===- MachineDominators.cpp - Machine Dominator Calculation --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements simple dominator construction algorithms for finding // forward dominators on machine functions. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/SmallBitVector.h" using namespace llvm; namespace llvm { template class DomTreeNodeBase<MachineBasicBlock>; template class DominatorTreeBase<MachineBasicBlock>; } char MachineDominatorTree::ID = 0; INITIALIZE_PASS(MachineDominatorTree, "machinedomtree", "MachineDominator Tree Construction", true, true) char &llvm::MachineDominatorsID = MachineDominatorTree::ID; void MachineDominatorTree::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } bool MachineDominatorTree::runOnMachineFunction(MachineFunction &F) { CriticalEdgesToSplit.clear(); NewBBs.clear(); DT->recalculate(F); return false; } MachineDominatorTree::MachineDominatorTree() : MachineFunctionPass(ID) { initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); DT = new DominatorTreeBase<MachineBasicBlock>(false); } MachineDominatorTree::~MachineDominatorTree() { delete DT; } void MachineDominatorTree::releaseMemory() { DT->releaseMemory(); } void MachineDominatorTree::print(raw_ostream &OS, const Module*) const { DT->print(OS); } void MachineDominatorTree::applySplitCriticalEdges() const { // Bail out early if there is nothing to do. if (CriticalEdgesToSplit.empty()) return; // For each element in CriticalEdgesToSplit, remember whether or not element // is the new immediate domminator of its successor. The mapping is done by // index, i.e., the information for the ith element of CriticalEdgesToSplit is // the ith element of IsNewIDom. SmallBitVector IsNewIDom(CriticalEdgesToSplit.size(), true); size_t Idx = 0; // Collect all the dominance properties info, before invalidating // the underlying DT. for (CriticalEdge &Edge : CriticalEdgesToSplit) { // Update dominator information. MachineBasicBlock *Succ = Edge.ToBB; MachineDomTreeNode *SuccDTNode = DT->getNode(Succ); for (MachineBasicBlock *PredBB : Succ->predecessors()) { if (PredBB == Edge.NewBB) continue; // If we are in this situation: // FromBB1 FromBB2 // + + // + + + + // + + + + // ... Split1 Split2 ... // + + // + + // + // Succ // Instead of checking the domiance property with Split2, we check it with // FromBB2 since Split2 is still unknown of the underlying DT structure. if (NewBBs.count(PredBB)) { assert(PredBB->pred_size() == 1 && "A basic block resulting from a " "critical edge split has more " "than one predecessor!"); PredBB = *PredBB->pred_begin(); } if (!DT->dominates(SuccDTNode, DT->getNode(PredBB))) { IsNewIDom[Idx] = false; break; } } ++Idx; } // Now, update DT with the collected dominance properties info. Idx = 0; for (CriticalEdge &Edge : CriticalEdgesToSplit) { // We know FromBB dominates NewBB. MachineDomTreeNode *NewDTNode = DT->addNewBlock(Edge.NewBB, Edge.FromBB); // If all the other predecessors of "Succ" are dominated by "Succ" itself // then the new block is the new immediate dominator of "Succ". Otherwise, // the new block doesn't dominate anything. if (IsNewIDom[Idx]) DT->changeImmediateDominator(DT->getNode(Edge.ToBB), NewDTNode); ++Idx; } NewBBs.clear(); CriticalEdgesToSplit.clear(); }