Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/CodeGen/MachineTraceMetrics.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineTraceMetrics.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SparseSet.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "machine-trace-metrics" char MachineTraceMetrics::ID = 0; char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; INITIALIZE_PASS_BEGIN(MachineTraceMetrics, "machine-trace-metrics", "Machine Trace Metrics", false, true) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_END(MachineTraceMetrics, "machine-trace-metrics", "Machine Trace Metrics", false, true) MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr), MRI(nullptr), Loops(nullptr) { std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); } void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<MachineBranchProbabilityInfo>(); AU.addRequired<MachineLoopInfo>(); MachineFunctionPass::getAnalysisUsage(AU); } bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { MF = &Func; const TargetSubtargetInfo &ST = MF->getSubtarget(); TII = ST.getInstrInfo(); TRI = ST.getRegisterInfo(); MRI = &MF->getRegInfo(); Loops = &getAnalysis<MachineLoopInfo>(); SchedModel.init(ST.getSchedModel(), &ST, TII); BlockInfo.resize(MF->getNumBlockIDs()); ProcResourceCycles.resize(MF->getNumBlockIDs() * SchedModel.getNumProcResourceKinds()); return false; } void MachineTraceMetrics::releaseMemory() { MF = nullptr; BlockInfo.clear(); for (unsigned i = 0; i != TS_NumStrategies; ++i) { delete Ensembles[i]; Ensembles[i] = nullptr; } } //===----------------------------------------------------------------------===// // Fixed block information //===----------------------------------------------------------------------===// // // The number of instructions in a basic block and the CPU resources used by // those instructions don't depend on any given trace strategy. /// Compute the resource usage in basic block MBB. const MachineTraceMetrics::FixedBlockInfo* MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { assert(MBB && "No basic block"); FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; if (FBI->hasResources()) return FBI; // Compute resource usage in the block. FBI->HasCalls = false; unsigned InstrCount = 0; // Add up per-processor resource cycles as well. unsigned PRKinds = SchedModel.getNumProcResourceKinds(); SmallVector<unsigned, 32> PRCycles(PRKinds); for (const auto &MI : *MBB) { if (MI.isTransient()) continue; ++InstrCount; if (MI.isCall()) FBI->HasCalls = true; // Count processor resources used. if (!SchedModel.hasInstrSchedModel()) continue; const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); if (!SC->isValid()) continue; for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); PRCycles[PI->ProcResourceIdx] += PI->Cycles; } } FBI->InstrCount = InstrCount; // Scale the resource cycles so they are comparable. unsigned PROffset = MBB->getNumber() * PRKinds; for (unsigned K = 0; K != PRKinds; ++K) ProcResourceCycles[PROffset + K] = PRCycles[K] * SchedModel.getResourceFactor(K); return FBI; } ArrayRef<unsigned> MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { assert(BlockInfo[MBBNum].hasResources() && "getResources() must be called before getProcResourceCycles()"); unsigned PRKinds = SchedModel.getNumProcResourceKinds(); assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); } //===----------------------------------------------------------------------===// // Ensemble utility functions //===----------------------------------------------------------------------===// MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) : MTM(*ct) { BlockInfo.resize(MTM.BlockInfo.size()); unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); } // Virtual destructor serves as an anchor. MachineTraceMetrics::Ensemble::~Ensemble() {} const MachineLoop* MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { return MTM.Loops->getLoopFor(MBB); } // Update resource-related information in the TraceBlockInfo for MBB. // Only update resources related to the trace above MBB. void MachineTraceMetrics::Ensemble:: computeDepthResources(const MachineBasicBlock *MBB) { TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); unsigned PROffset = MBB->getNumber() * PRKinds; // Compute resources from trace above. The top block is simple. if (!TBI->Pred) { TBI->InstrDepth = 0; TBI->Head = MBB->getNumber(); std::fill(ProcResourceDepths.begin() + PROffset, ProcResourceDepths.begin() + PROffset + PRKinds, 0); return; } // Compute from the block above. A post-order traversal ensures the // predecessor is always computed first. unsigned PredNum = TBI->Pred->getNumber(); TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; TBI->Head = PredTBI->Head; // Compute per-resource depths. ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); for (unsigned K = 0; K != PRKinds; ++K) ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; } // Update resource-related information in the TraceBlockInfo for MBB. // Only update resources related to the trace below MBB. void MachineTraceMetrics::Ensemble:: computeHeightResources(const MachineBasicBlock *MBB) { TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); unsigned PROffset = MBB->getNumber() * PRKinds; // Compute resources for the current block. TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); // The trace tail is done. if (!TBI->Succ) { TBI->Tail = MBB->getNumber(); std::copy(PRCycles.begin(), PRCycles.end(), ProcResourceHeights.begin() + PROffset); return; } // Compute from the block below. A post-order traversal ensures the // predecessor is always computed first. unsigned SuccNum = TBI->Succ->getNumber(); TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); TBI->InstrHeight += SuccTBI->InstrHeight; TBI->Tail = SuccTBI->Tail; // Compute per-resource heights. ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); for (unsigned K = 0; K != PRKinds; ++K) ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; } // Check if depth resources for MBB are valid and return the TBI. // Return NULL if the resources have been invalidated. const MachineTraceMetrics::TraceBlockInfo* MachineTraceMetrics::Ensemble:: getDepthResources(const MachineBasicBlock *MBB) const { const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; return TBI->hasValidDepth() ? TBI : nullptr; } // Check if height resources for MBB are valid and return the TBI. // Return NULL if the resources have been invalidated. const MachineTraceMetrics::TraceBlockInfo* MachineTraceMetrics::Ensemble:: getHeightResources(const MachineBasicBlock *MBB) const { const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; return TBI->hasValidHeight() ? TBI : nullptr; } /// Get an array of processor resource depths for MBB. Indexed by processor /// resource kind, this array contains the scaled processor resources consumed /// by all blocks preceding MBB in its trace. It does not include instructions /// in MBB. /// /// Compare TraceBlockInfo::InstrDepth. ArrayRef<unsigned> MachineTraceMetrics::Ensemble:: getProcResourceDepths(unsigned MBBNum) const { unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); } /// Get an array of processor resource heights for MBB. Indexed by processor /// resource kind, this array contains the scaled processor resources consumed /// by this block and all blocks following it in its trace. /// /// Compare TraceBlockInfo::InstrHeight. ArrayRef<unsigned> MachineTraceMetrics::Ensemble:: getProcResourceHeights(unsigned MBBNum) const { unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); } //===----------------------------------------------------------------------===// // Trace Selection Strategies //===----------------------------------------------------------------------===// // // A trace selection strategy is implemented as a sub-class of Ensemble. The // trace through a block B is computed by two DFS traversals of the CFG // starting from B. One upwards, and one downwards. During the upwards DFS, // pickTracePred() is called on the post-ordered blocks. During the downwards // DFS, pickTraceSucc() is called in a post-order. // // We never allow traces that leave loops, but we do allow traces to enter // nested loops. We also never allow traces to contain back-edges. // // This means that a loop header can never appear above the center block of a // trace, except as the trace head. Below the center block, loop exiting edges // are banned. // // Return true if an edge from the From loop to the To loop is leaving a loop. // Either of To and From can be null. static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { return From && !From->contains(To); } // MinInstrCountEnsemble - Pick the trace that executes the least number of // instructions. namespace { class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { const char *getName() const override { return "MinInstr"; } const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; public: MinInstrCountEnsemble(MachineTraceMetrics *mtm) : MachineTraceMetrics::Ensemble(mtm) {} }; } // Select the preferred predecessor for MBB. const MachineBasicBlock* MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { if (MBB->pred_empty()) return nullptr; const MachineLoop *CurLoop = getLoopFor(MBB); // Don't leave loops, and never follow back-edges. if (CurLoop && MBB == CurLoop->getHeader()) return nullptr; unsigned CurCount = MTM.getResources(MBB)->InstrCount; const MachineBasicBlock *Best = nullptr; unsigned BestDepth = 0; for (const MachineBasicBlock *Pred : MBB->predecessors()) { const MachineTraceMetrics::TraceBlockInfo *PredTBI = getDepthResources(Pred); // Ignore cycles that aren't natural loops. if (!PredTBI) continue; // Pick the predecessor that would give this block the smallest InstrDepth. unsigned Depth = PredTBI->InstrDepth + CurCount; if (!Best || Depth < BestDepth) Best = Pred, BestDepth = Depth; } return Best; } // Select the preferred successor for MBB. const MachineBasicBlock* MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { if (MBB->pred_empty()) return nullptr; const MachineLoop *CurLoop = getLoopFor(MBB); const MachineBasicBlock *Best = nullptr; unsigned BestHeight = 0; for (const MachineBasicBlock *Succ : MBB->successors()) { // Don't consider back-edges. if (CurLoop && Succ == CurLoop->getHeader()) continue; // Don't consider successors exiting CurLoop. if (isExitingLoop(CurLoop, getLoopFor(Succ))) continue; const MachineTraceMetrics::TraceBlockInfo *SuccTBI = getHeightResources(Succ); // Ignore cycles that aren't natural loops. if (!SuccTBI) continue; // Pick the successor that would give this block the smallest InstrHeight. unsigned Height = SuccTBI->InstrHeight; if (!Best || Height < BestHeight) Best = Succ, BestHeight = Height; } return Best; } // Get an Ensemble sub-class for the requested trace strategy. MachineTraceMetrics::Ensemble * MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); Ensemble *&E = Ensembles[strategy]; if (E) return E; // Allocate new Ensemble on demand. switch (strategy) { case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); default: llvm_unreachable("Invalid trace strategy enum"); } } void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); BlockInfo[MBB->getNumber()].invalidate(); for (unsigned i = 0; i != TS_NumStrategies; ++i) if (Ensembles[i]) Ensembles[i]->invalidate(MBB); } void MachineTraceMetrics::verifyAnalysis() const { if (!MF) return; #ifndef NDEBUG assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); for (unsigned i = 0; i != TS_NumStrategies; ++i) if (Ensembles[i]) Ensembles[i]->verify(); #endif } //===----------------------------------------------------------------------===// // Trace building //===----------------------------------------------------------------------===// // // Traces are built by two CFG traversals. To avoid recomputing too much, use a // set abstraction that confines the search to the current loop, and doesn't // revisit blocks. namespace { struct LoopBounds { MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; SmallPtrSet<const MachineBasicBlock*, 8> Visited; const MachineLoopInfo *Loops; bool Downward; LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops), Downward(false) {} }; } // Specialize po_iterator_storage in order to prune the post-order traversal so // it is limited to the current loop and doesn't traverse the loop back edges. namespace llvm { template<> class po_iterator_storage<LoopBounds, true> { LoopBounds &LB; public: po_iterator_storage(LoopBounds &lb) : LB(lb) {} void finishPostorder(const MachineBasicBlock*) {} bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { // Skip already visited To blocks. MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) return false; // From is null once when To is the trace center block. if (From) { if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) { // Don't follow backedges, don't leave FromLoop when going upwards. if ((LB.Downward ? To : From) == FromLoop->getHeader()) return false; // Don't leave FromLoop. if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) return false; } } // To is a new block. Mark the block as visited in case the CFG has cycles // that MachineLoopInfo didn't recognize as a natural loop. return LB.Visited.insert(To).second; } }; } /// Compute the trace through MBB. void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" << MBB->getNumber() << '\n'); // Set up loop bounds for the backwards post-order traversal. LoopBounds Bounds(BlockInfo, MTM.Loops); // Run an upwards post-order search for the trace start. Bounds.Downward = false; Bounds.Visited.clear(); for (auto I : inverse_post_order_ext(MBB, Bounds)) { DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; // All the predecessors have been visited, pick the preferred one. TBI.Pred = pickTracePred(I); DEBUG({ if (TBI.Pred) dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; else dbgs() << "null\n"; }); // The trace leading to I is now known, compute the depth resources. computeDepthResources(I); } // Run a downwards post-order search for the trace end. Bounds.Downward = true; Bounds.Visited.clear(); for (auto I : post_order_ext(MBB, Bounds)) { DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; // All the successors have been visited, pick the preferred one. TBI.Succ = pickTraceSucc(I); DEBUG({ if (TBI.Succ) dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; else dbgs() << "null\n"; }); // The trace leaving I is now known, compute the height resources. computeHeightResources(I); } } /// Invalidate traces through BadMBB. void MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { SmallVector<const MachineBasicBlock*, 16> WorkList; TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; // Invalidate height resources of blocks above MBB. if (BadTBI.hasValidHeight()) { BadTBI.invalidateHeight(); WorkList.push_back(BadMBB); do { const MachineBasicBlock *MBB = WorkList.pop_back_val(); DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() << " height.\n"); // Find any MBB predecessors that have MBB as their preferred successor. // They are the only ones that need to be invalidated. for (const MachineBasicBlock *Pred : MBB->predecessors()) { TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; if (!TBI.hasValidHeight()) continue; if (TBI.Succ == MBB) { TBI.invalidateHeight(); WorkList.push_back(Pred); continue; } // Verify that TBI.Succ is actually a *I successor. assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); } } while (!WorkList.empty()); } // Invalidate depth resources of blocks below MBB. if (BadTBI.hasValidDepth()) { BadTBI.invalidateDepth(); WorkList.push_back(BadMBB); do { const MachineBasicBlock *MBB = WorkList.pop_back_val(); DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() << " depth.\n"); // Find any MBB successors that have MBB as their preferred predecessor. // They are the only ones that need to be invalidated. for (const MachineBasicBlock *Succ : MBB->successors()) { TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; if (!TBI.hasValidDepth()) continue; if (TBI.Pred == MBB) { TBI.invalidateDepth(); WorkList.push_back(Succ); continue; } // Verify that TBI.Pred is actually a *I predecessor. assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); } } while (!WorkList.empty()); } // Clear any per-instruction data. We only have to do this for BadMBB itself // because the instructions in that block may change. Other blocks may be // invalidated, but their instructions will stay the same, so there is no // need to erase the Cycle entries. They will be overwritten when we // recompute. for (const auto &I : *BadMBB) Cycles.erase(&I); } void MachineTraceMetrics::Ensemble::verify() const { #ifndef NDEBUG assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && "Outdated BlockInfo size"); for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { const TraceBlockInfo &TBI = BlockInfo[Num]; if (TBI.hasValidDepth() && TBI.Pred) { const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && "Trace is broken, depth should have been invalidated."); const MachineLoop *Loop = getLoopFor(MBB); assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); } if (TBI.hasValidHeight() && TBI.Succ) { const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && "Trace is broken, height should have been invalidated."); const MachineLoop *Loop = getLoopFor(MBB); const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && "Trace contains backedge"); } } #endif } //===----------------------------------------------------------------------===// // Data Dependencies //===----------------------------------------------------------------------===// // // Compute the depth and height of each instruction based on data dependencies // and instruction latencies. These cycle numbers assume that the CPU can issue // an infinite number of instructions per cycle as long as their dependencies // are ready. // A data dependency is represented as a defining MI and operand numbers on the // defining and using MI. namespace { struct DataDep { const MachineInstr *DefMI; unsigned DefOp; unsigned UseOp; DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} /// Create a DataDep from an SSA form virtual register. DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) : UseOp(UseOp) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); assert(!DefI.atEnd() && "Register has no defs"); DefMI = DefI->getParent(); DefOp = DefI.getOperandNo(); assert((++DefI).atEnd() && "Register has multiple defs"); } }; } // Get the input data dependencies that must be ready before UseMI can issue. // Return true if UseMI has any physreg operands. static bool getDataDeps(const MachineInstr *UseMI, SmallVectorImpl<DataDep> &Deps, const MachineRegisterInfo *MRI) { // Debug values should not be included in any calculations. if (UseMI->isDebugValue()) return false; bool HasPhysRegs = false; for (MachineInstr::const_mop_iterator I = UseMI->operands_begin(), E = UseMI->operands_end(); I != E; ++I) { const MachineOperand &MO = *I; if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg)) { HasPhysRegs = true; continue; } // Collect virtual register reads. if (MO.readsReg()) Deps.push_back(DataDep(MRI, Reg, UseMI->getOperandNo(I))); } return HasPhysRegs; } // Get the input data dependencies of a PHI instruction, using Pred as the // preferred predecessor. // This will add at most one dependency to Deps. static void getPHIDeps(const MachineInstr *UseMI, SmallVectorImpl<DataDep> &Deps, const MachineBasicBlock *Pred, const MachineRegisterInfo *MRI) { // No predecessor at the beginning of a trace. Ignore dependencies. if (!Pred) return; assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { if (UseMI->getOperand(i + 1).getMBB() == Pred) { unsigned Reg = UseMI->getOperand(i).getReg(); Deps.push_back(DataDep(MRI, Reg, i)); return; } } } // Keep track of physreg data dependencies by recording each live register unit. // Associate each regunit with an instruction operand. Depending on the // direction instructions are scanned, it could be the operand that defined the // regunit, or the highest operand to read the regunit. namespace { struct LiveRegUnit { unsigned RegUnit; unsigned Cycle; const MachineInstr *MI; unsigned Op; unsigned getSparseSetIndex() const { return RegUnit; } LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {} }; } // Identify physreg dependencies for UseMI, and update the live regunit // tracking set when scanning instructions downwards. static void updatePhysDepsDownwards(const MachineInstr *UseMI, SmallVectorImpl<DataDep> &Deps, SparseSet<LiveRegUnit> &RegUnits, const TargetRegisterInfo *TRI) { SmallVector<unsigned, 8> Kills; SmallVector<unsigned, 8> LiveDefOps; for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(), ME = UseMI->operands_end(); MI != ME; ++MI) { const MachineOperand &MO = *MI; if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; // Track live defs and kills for updating RegUnits. if (MO.isDef()) { if (MO.isDead()) Kills.push_back(Reg); else LiveDefOps.push_back(UseMI->getOperandNo(MI)); } else if (MO.isKill()) Kills.push_back(Reg); // Identify dependencies. if (!MO.readsReg()) continue; for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); if (I == RegUnits.end()) continue; Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI))); break; } } // Update RegUnits to reflect live registers after UseMI. // First kills. for (unsigned Kill : Kills) for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units) RegUnits.erase(*Units); // Second, live defs. for (unsigned DefOp : LiveDefOps) { for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); Units.isValid(); ++Units) { LiveRegUnit &LRU = RegUnits[*Units]; LRU.MI = UseMI; LRU.Op = DefOp; } } } /// The length of the critical path through a trace is the maximum of two path /// lengths: /// /// 1. The maximum height+depth over all instructions in the trace center block. /// /// 2. The longest cross-block dependency chain. For small blocks, it is /// possible that the critical path through the trace doesn't include any /// instructions in the block. /// /// This function computes the second number from the live-in list of the /// center block. unsigned MachineTraceMetrics::Ensemble:: computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { assert(TBI.HasValidInstrDepths && "Missing depth info"); assert(TBI.HasValidInstrHeights && "Missing height info"); unsigned MaxLen = 0; for (const LiveInReg &LIR : TBI.LiveIns) { if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) continue; const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); // Ignore dependencies outside the current trace. const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; if (!DefTBI.isUsefulDominator(TBI)) continue; unsigned Len = LIR.Height + Cycles[DefMI].Depth; MaxLen = std::max(MaxLen, Len); } return MaxLen; } /// Compute instruction depths for all instructions above or in MBB in its /// trace. This assumes that the trace through MBB has already been computed. void MachineTraceMetrics::Ensemble:: computeInstrDepths(const MachineBasicBlock *MBB) { // The top of the trace may already be computed, and HasValidInstrDepths // implies Head->HasValidInstrDepths, so we only need to start from the first // block in the trace that needs to be recomputed. SmallVector<const MachineBasicBlock*, 8> Stack; do { TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; assert(TBI.hasValidDepth() && "Incomplete trace"); if (TBI.HasValidInstrDepths) break; Stack.push_back(MBB); MBB = TBI.Pred; } while (MBB); // FIXME: If MBB is non-null at this point, it is the last pre-computed block // in the trace. We should track any live-out physregs that were defined in // the trace. This is quite rare in SSA form, typically created by CSE // hoisting a compare. SparseSet<LiveRegUnit> RegUnits; RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); // Go through trace blocks in top-down order, stopping after the center block. SmallVector<DataDep, 8> Deps; while (!Stack.empty()) { MBB = Stack.pop_back_val(); DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n"); TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; TBI.HasValidInstrDepths = true; TBI.CriticalPath = 0; // Print out resource depths here as well. DEBUG({ dbgs() << format("%7u Instructions\n", TBI.InstrDepth); ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); for (unsigned K = 0; K != PRDepths.size(); ++K) if (PRDepths[K]) { unsigned Factor = MTM.SchedModel.getResourceFactor(K); dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) << MTM.SchedModel.getProcResource(K)->Name << " (" << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; } }); // Also compute the critical path length through MBB when possible. if (TBI.HasValidInstrHeights) TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); for (const auto &UseMI : *MBB) { // Collect all data dependencies. Deps.clear(); if (UseMI.isPHI()) getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI); else if (getDataDeps(&UseMI, Deps, MTM.MRI)) updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); // Filter and process dependencies, computing the earliest issue cycle. unsigned Cycle = 0; for (const DataDep &Dep : Deps) { const TraceBlockInfo&DepTBI = BlockInfo[Dep.DefMI->getParent()->getNumber()]; // Ignore dependencies from outside the current trace. if (!DepTBI.isUsefulDominator(TBI)) continue; assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; // Add latency if DefMI is a real instruction. Transients get latency 0. if (!Dep.DefMI->isTransient()) DepCycle += MTM.SchedModel .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); Cycle = std::max(Cycle, DepCycle); } // Remember the instruction depth. InstrCycles &MICycles = Cycles[&UseMI]; MICycles.Depth = Cycle; if (!TBI.HasValidInstrHeights) { DEBUG(dbgs() << Cycle << '\t' << UseMI); continue; } // Update critical path length. TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); } } } // Identify physreg dependencies for MI when scanning instructions upwards. // Return the issue height of MI after considering any live regunits. // Height is the issue height computed from virtual register dependencies alone. static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, SparseSet<LiveRegUnit> &RegUnits, const TargetSchedModel &SchedModel, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) { SmallVector<unsigned, 8> ReadOps; for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { const MachineOperand &MO = *MOI; if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (MO.readsReg()) ReadOps.push_back(MI->getOperandNo(MOI)); if (!MO.isDef()) continue; // This is a def of Reg. Remove corresponding entries from RegUnits, and // update MI Height to consider the physreg dependencies. for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); if (I == RegUnits.end()) continue; unsigned DepHeight = I->Cycle; if (!MI->isTransient()) { // We may not know the UseMI of this dependency, if it came from the // live-in list. SchedModel can handle a NULL UseMI. DepHeight += SchedModel .computeOperandLatency(MI, MI->getOperandNo(MOI), I->MI, I->Op); } Height = std::max(Height, DepHeight); // This regunit is dead above MI. RegUnits.erase(I); } } // Now we know the height of MI. Update any regunits read. for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { LiveRegUnit &LRU = RegUnits[*Units]; // Set the height to the highest reader of the unit. if (LRU.Cycle <= Height && LRU.MI != MI) { LRU.Cycle = Height; LRU.MI = MI; LRU.Op = ReadOps[i]; } } } return Height; } typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; // Push the height of DefMI upwards if required to match UseMI. // Return true if this is the first time DefMI was seen. static bool pushDepHeight(const DataDep &Dep, const MachineInstr *UseMI, unsigned UseHeight, MIHeightMap &Heights, const TargetSchedModel &SchedModel, const TargetInstrInfo *TII) { // Adjust height by Dep.DefMI latency. if (!Dep.DefMI->isTransient()) UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, UseMI, Dep.UseOp); // Update Heights[DefMI] to be the maximum height seen. MIHeightMap::iterator I; bool New; std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); if (New) return true; // DefMI has been pushed before. Give it the max height. if (I->second < UseHeight) I->second = UseHeight; return false; } /// Assuming that the virtual register defined by DefMI:DefOp was used by /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop /// when reaching the block that contains DefMI. void MachineTraceMetrics::Ensemble:: addLiveIns(const MachineInstr *DefMI, unsigned DefOp, ArrayRef<const MachineBasicBlock*> Trace) { assert(!Trace.empty() && "Trace should contain at least one block"); unsigned Reg = DefMI->getOperand(DefOp).getReg(); assert(TargetRegisterInfo::isVirtualRegister(Reg)); const MachineBasicBlock *DefMBB = DefMI->getParent(); // Reg is live-in to all blocks in Trace that follow DefMBB. for (unsigned i = Trace.size(); i; --i) { const MachineBasicBlock *MBB = Trace[i-1]; if (MBB == DefMBB) return; TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; // Just add the register. The height will be updated later. TBI.LiveIns.push_back(Reg); } } /// Compute instruction heights in the trace through MBB. This updates MBB and /// the blocks below it in the trace. It is assumed that the trace has already /// been computed. void MachineTraceMetrics::Ensemble:: computeInstrHeights(const MachineBasicBlock *MBB) { // The bottom of the trace may already be computed. // Find the blocks that need updating. SmallVector<const MachineBasicBlock*, 8> Stack; do { TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; assert(TBI.hasValidHeight() && "Incomplete trace"); if (TBI.HasValidInstrHeights) break; Stack.push_back(MBB); TBI.LiveIns.clear(); MBB = TBI.Succ; } while (MBB); // As we move upwards in the trace, keep track of instructions that are // required by deeper trace instructions. Map MI -> height required so far. MIHeightMap Heights; // For physregs, the def isn't known when we see the use. // Instead, keep track of the highest use of each regunit. SparseSet<LiveRegUnit> RegUnits; RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); // If the bottom of the trace was already precomputed, initialize heights // from its live-in list. // MBB is the highest precomputed block in the trace. if (MBB) { TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; for (LiveInReg &LI : TBI.LiveIns) { if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { // For virtual registers, the def latency is included. unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; if (Height < LI.Height) Height = LI.Height; } else { // For register units, the def latency is not included because we don't // know the def yet. RegUnits[LI.Reg].Cycle = LI.Height; } } } // Go through the trace blocks in bottom-up order. SmallVector<DataDep, 8> Deps; for (;!Stack.empty(); Stack.pop_back()) { MBB = Stack.back(); DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; TBI.HasValidInstrHeights = true; TBI.CriticalPath = 0; DEBUG({ dbgs() << format("%7u Instructions\n", TBI.InstrHeight); ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); for (unsigned K = 0; K != PRHeights.size(); ++K) if (PRHeights[K]) { unsigned Factor = MTM.SchedModel.getResourceFactor(K); dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) << MTM.SchedModel.getProcResource(K)->Name << " (" << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; } }); // Get dependencies from PHIs in the trace successor. const MachineBasicBlock *Succ = TBI.Succ; // If MBB is the last block in the trace, and it has a back-edge to the // loop header, get loop-carried dependencies from PHIs in the header. For // that purpose, pretend that all the loop header PHIs have height 0. if (!Succ) if (const MachineLoop *Loop = getLoopFor(MBB)) if (MBB->isSuccessor(Loop->getHeader())) Succ = Loop->getHeader(); if (Succ) { for (const auto &PHI : *Succ) { if (!PHI.isPHI()) break; Deps.clear(); getPHIDeps(&PHI, Deps, MBB, MTM.MRI); if (!Deps.empty()) { // Loop header PHI heights are all 0. unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); if (pushDepHeight(Deps.front(), &PHI, Height, Heights, MTM.SchedModel, MTM.TII)) addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); } } } // Go through the block backwards. for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); BI != BB;) { const MachineInstr *MI = --BI; // Find the MI height as determined by virtual register uses in the // trace below. unsigned Cycle = 0; MIHeightMap::iterator HeightI = Heights.find(MI); if (HeightI != Heights.end()) { Cycle = HeightI->second; // We won't be seeing any more MI uses. Heights.erase(HeightI); } // Don't process PHI deps. They depend on the specific predecessor, and // we'll get them when visiting the predecessor. Deps.clear(); bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); // There may also be regunit dependencies to include in the height. if (HasPhysRegs) Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, MTM.TII, MTM.TRI); // Update the required height of any virtual registers read by MI. for (const DataDep &Dep : Deps) if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) addLiveIns(Dep.DefMI, Dep.DefOp, Stack); InstrCycles &MICycles = Cycles[MI]; MICycles.Height = Cycle; if (!TBI.HasValidInstrDepths) { DEBUG(dbgs() << Cycle << '\t' << *MI); continue; } // Update critical path length. TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); } // Update virtual live-in heights. They were added by addLiveIns() with a 0 // height because the final height isn't known until now. DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); for (LiveInReg &LIR : TBI.LiveIns) { const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); LIR.Height = Heights.lookup(DefMI); DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); } // Transfer the live regunits to the live-in list. for (SparseSet<LiveRegUnit>::const_iterator RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) << '@' << RI->Cycle); } DEBUG(dbgs() << '\n'); if (!TBI.HasValidInstrDepths) continue; // Add live-ins to the critical path length. TBI.CriticalPath = std::max(TBI.CriticalPath, computeCrossBlockCriticalPath(TBI)); DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); } } MachineTraceMetrics::Trace MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) computeTrace(MBB); if (!TBI.HasValidInstrDepths) computeInstrDepths(MBB); if (!TBI.HasValidInstrHeights) computeInstrHeights(MBB); return Trace(*this, TBI); } unsigned MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const { assert(MI && "Not an instruction."); assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) && "MI must be in the trace center block"); InstrCycles Cyc = getInstrCycles(MI); return getCriticalPath() - (Cyc.Depth + Cyc.Height); } unsigned MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const { const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); SmallVector<DataDep, 1> Deps; getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); DataDep &Dep = Deps.front(); unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth; // Add latency if DefMI is a real instruction. Transients get latency 0. if (!Dep.DefMI->isTransient()) DepCycle += TE.MTM.SchedModel .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp); return DepCycle; } /// When bottom is set include instructions in current block in estimate. unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { // Find the limiting processor resource. // Numbers have been pre-scaled to be comparable. unsigned PRMax = 0; ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); if (Bottom) { ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); for (unsigned K = 0; K != PRDepths.size(); ++K) PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); } else { for (unsigned K = 0; K != PRDepths.size(); ++K) PRMax = std::max(PRMax, PRDepths[K]); } // Convert to cycle count. PRMax = TE.MTM.getCycles(PRMax); /// All instructions before current block unsigned Instrs = TBI.InstrDepth; // plus instructions in current block if (Bottom) Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) Instrs /= IW; // Assume issue width 1 without a schedule model. return std::max(Instrs, PRMax); } unsigned MachineTraceMetrics::Trace::getResourceLength( ArrayRef<const MachineBasicBlock *> Extrablocks, ArrayRef<const MCSchedClassDesc *> ExtraInstrs, ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { // Add up resources above and below the center block. ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); unsigned PRMax = 0; // Capture computing cycles from extra instructions auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, unsigned ResourceIdx) ->unsigned { unsigned Cycles = 0; for (const MCSchedClassDesc *SC : Instrs) { if (!SC->isValid()) continue; for (TargetSchedModel::ProcResIter PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { if (PI->ProcResourceIdx != ResourceIdx) continue; Cycles += (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); } } return Cycles; }; for (unsigned K = 0; K != PRDepths.size(); ++K) { unsigned PRCycles = PRDepths[K] + PRHeights[K]; for (const MachineBasicBlock *MBB : Extrablocks) PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K]; PRCycles += extraCycles(ExtraInstrs, K); PRCycles -= extraCycles(RemoveInstrs, K); PRMax = std::max(PRMax, PRCycles); } // Convert to cycle count. PRMax = TE.MTM.getCycles(PRMax); // Instrs: #instructions in current trace outside current block. unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; // Add instruction count from the extra blocks. for (const MachineBasicBlock *MBB : Extrablocks) Instrs += TE.MTM.getResources(MBB)->InstrCount; Instrs += ExtraInstrs.size(); Instrs -= RemoveInstrs.size(); if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) Instrs /= IW; // Assume issue width 1 without a schedule model. return std::max(Instrs, PRMax); } bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI, const MachineInstr *UseMI) const { if (DefMI->getParent() == UseMI->getParent()) return true; const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()]; const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()]; return DepTBI.isUsefulDominator(TBI); } void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { OS << getName() << " ensemble:\n"; for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { OS << " BB#" << i << '\t'; BlockInfo[i].print(OS); OS << '\n'; } } void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { if (hasValidDepth()) { OS << "depth=" << InstrDepth; if (Pred) OS << " pred=BB#" << Pred->getNumber(); else OS << " pred=null"; OS << " head=BB#" << Head; if (HasValidInstrDepths) OS << " +instrs"; } else OS << "depth invalid"; OS << ", "; if (hasValidHeight()) { OS << "height=" << InstrHeight; if (Succ) OS << " succ=BB#" << Succ->getNumber(); else OS << " succ=null"; OS << " tail=BB#" << Tail; if (HasValidInstrHeights) OS << " +instrs"; } else OS << "height invalid"; if (HasValidInstrDepths && HasValidInstrHeights) OS << ", crit=" << CriticalPath; } void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { unsigned MBBNum = &TBI - &TE.BlockInfo[0]; OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum << " --> BB#" << TBI.Tail << ':'; if (TBI.hasValidHeight() && TBI.hasValidDepth()) OS << ' ' << getInstrCount() << " instrs."; if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) OS << ' ' << TBI.CriticalPath << " cycles."; const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; OS << "\nBB#" << MBBNum; while (Block->hasValidDepth() && Block->Pred) { unsigned Num = Block->Pred->getNumber(); OS << " <- BB#" << Num; Block = &TE.BlockInfo[Num]; } Block = &TBI; OS << "\n "; while (Block->hasValidHeight() && Block->Succ) { unsigned Num = Block->Succ->getNumber(); OS << " -> BB#" << Num; Block = &TE.BlockInfo[Num]; } OS << '\n'; }