Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/CodeGen/RegAllocPBQP.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based // register allocator for LLVM. This allocator works by constructing a PBQP // problem representing the register allocation problem under consideration, // solving this using a PBQP solver, and mapping the solution back to a // register assignment. If any variables are selected for spilling then spill // code is inserted and the process repeated. // // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned // for register allocation. For more information on PBQP for register // allocation, see the following papers: // // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with // PBQP. In Proceedings of the 7th Joint Modular Languages Conference // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. // // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular // architectures. In Proceedings of the Joint Conference on Languages, // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, // NY, USA, 139-148. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/RegAllocPBQP.h" #include "RegisterCoalescer.h" #include "Spiller.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Printable.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <limits> #include <memory> #include <queue> #include <set> #include <sstream> #include <vector> using namespace llvm; #define DEBUG_TYPE "regalloc" static RegisterRegAlloc RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", createDefaultPBQPRegisterAllocator); static cl::opt<bool> PBQPCoalescing("pbqp-coalescing", cl::desc("Attempt coalescing during PBQP register allocation."), cl::init(false), cl::Hidden); #ifndef NDEBUG static cl::opt<bool> PBQPDumpGraphs("pbqp-dump-graphs", cl::desc("Dump graphs for each function/round in the compilation unit."), cl::init(false), cl::Hidden); #endif namespace { /// /// PBQP based allocators solve the register allocation problem by mapping /// register allocation problems to Partitioned Boolean Quadratic /// Programming problems. class RegAllocPBQP : public MachineFunctionPass { public: static char ID; /// Construct a PBQP register allocator. RegAllocPBQP(char *cPassID = nullptr) : MachineFunctionPass(ID), customPassID(cPassID) { initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); } /// Return the pass name. const char* getPassName() const override { return "PBQP Register Allocator"; } /// PBQP analysis usage. void getAnalysisUsage(AnalysisUsage &au) const override; /// Perform register allocation bool runOnMachineFunction(MachineFunction &MF) override; private: typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; typedef std::vector<const LiveInterval*> Node2LIMap; typedef std::vector<unsigned> AllowedSet; typedef std::vector<AllowedSet> AllowedSetMap; typedef std::pair<unsigned, unsigned> RegPair; typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; typedef std::set<unsigned> RegSet; char *customPassID; RegSet VRegsToAlloc, EmptyIntervalVRegs; /// \brief Finds the initial set of vreg intervals to allocate. void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); /// \brief Constructs an initial graph. void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); /// \brief Spill the given VReg. void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals, MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, Spiller &VRegSpiller); /// \brief Given a solved PBQP problem maps this solution back to a register /// assignment. bool mapPBQPToRegAlloc(const PBQPRAGraph &G, const PBQP::Solution &Solution, VirtRegMap &VRM, Spiller &VRegSpiller); /// \brief Postprocessing before final spilling. Sets basic block "live in" /// variables. void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM) const; }; char RegAllocPBQP::ID = 0; /// @brief Set spill costs for each node in the PBQP reg-alloc graph. class SpillCosts : public PBQPRAConstraint { public: void apply(PBQPRAGraph &G) override { LiveIntervals &LIS = G.getMetadata().LIS; // A minimum spill costs, so that register constraints can can be set // without normalization in the [0.0:MinSpillCost( interval. const PBQP::PBQPNum MinSpillCost = 10.0; for (auto NId : G.nodeIds()) { PBQP::PBQPNum SpillCost = LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; if (SpillCost == 0.0) SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); else SpillCost += MinSpillCost; PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; G.setNodeCosts(NId, std::move(NodeCosts)); } } }; /// @brief Add interference edges between overlapping vregs. class Interference : public PBQPRAConstraint { private: typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr; typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey; typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache; typedef DenseSet<IKey> DisjointAllowedRegsCache; typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey; typedef DenseSet<IEdgeKey> IEdgeCache; bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, const DisjointAllowedRegsCache &D) const { const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); if (NRegs == MRegs) return false; if (NRegs < MRegs) return D.count(IKey(NRegs, MRegs)) > 0; return D.count(IKey(MRegs, NRegs)) > 0; } void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, DisjointAllowedRegsCache &D) { const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); if (NRegs < MRegs) D.insert(IKey(NRegs, MRegs)); else D.insert(IKey(MRegs, NRegs)); } // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required // for the fast interference graph construction algorithm. The last is there // to save us from looking up node ids via the VRegToNode map in the graph // metadata. typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId> IntervalInfo; static SlotIndex getStartPoint(const IntervalInfo &I) { return std::get<0>(I)->segments[std::get<1>(I)].start; } static SlotIndex getEndPoint(const IntervalInfo &I) { return std::get<0>(I)->segments[std::get<1>(I)].end; } static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { return std::get<2>(I); } static bool lowestStartPoint(const IntervalInfo &I1, const IntervalInfo &I2) { // Condition reversed because priority queue has the *highest* element at // the front, rather than the lowest. return getStartPoint(I1) > getStartPoint(I2); } static bool lowestEndPoint(const IntervalInfo &I1, const IntervalInfo &I2) { SlotIndex E1 = getEndPoint(I1); SlotIndex E2 = getEndPoint(I2); if (E1 < E2) return true; if (E1 > E2) return false; // If two intervals end at the same point, we need a way to break the tie or // the set will assume they're actually equal and refuse to insert a // "duplicate". Just compare the vregs - fast and guaranteed unique. return std::get<0>(I1)->reg < std::get<0>(I2)->reg; } static bool isAtLastSegment(const IntervalInfo &I) { return std::get<1>(I) == std::get<0>(I)->size() - 1; } static IntervalInfo nextSegment(const IntervalInfo &I) { return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); } public: void apply(PBQPRAGraph &G) override { // The following is loosely based on the linear scan algorithm introduced in // "Linear Scan Register Allocation" by Poletto and Sarkar. This version // isn't linear, because the size of the active set isn't bound by the // number of registers, but rather the size of the largest clique in the // graph. Still, we expect this to be better than N^2. LiveIntervals &LIS = G.getMetadata().LIS; // Interferenc matrices are incredibly regular - they're only a function of // the allowed sets, so we cache them to avoid the overhead of constructing // and uniquing them. IMatrixCache C; // Finding an edge is expensive in the worst case (O(max_clique(G))). So // cache locally edges we have already seen. IEdgeCache EC; // Cache known disjoint allowed registers pairs DisjointAllowedRegsCache D; typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet; typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, decltype(&lowestStartPoint)> IntervalQueue; IntervalSet Active(lowestEndPoint); IntervalQueue Inactive(lowestStartPoint); // Start by building the inactive set. for (auto NId : G.nodeIds()) { unsigned VReg = G.getNodeMetadata(NId).getVReg(); LiveInterval &LI = LIS.getInterval(VReg); assert(!LI.empty() && "PBQP graph contains node for empty interval"); Inactive.push(std::make_tuple(&LI, 0, NId)); } while (!Inactive.empty()) { // Tentatively grab the "next" interval - this choice may be overriden // below. IntervalInfo Cur = Inactive.top(); // Retire any active intervals that end before Cur starts. IntervalSet::iterator RetireItr = Active.begin(); while (RetireItr != Active.end() && (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { // If this interval has subsequent segments, add the next one to the // inactive list. if (!isAtLastSegment(*RetireItr)) Inactive.push(nextSegment(*RetireItr)); ++RetireItr; } Active.erase(Active.begin(), RetireItr); // One of the newly retired segments may actually start before the // Cur segment, so re-grab the front of the inactive list. Cur = Inactive.top(); Inactive.pop(); // At this point we know that Cur overlaps all active intervals. Add the // interference edges. PBQP::GraphBase::NodeId NId = getNodeId(Cur); for (const auto &A : Active) { PBQP::GraphBase::NodeId MId = getNodeId(A); // Do not add an edge when the nodes' allowed registers do not // intersect: there is obviously no interference. if (haveDisjointAllowedRegs(G, NId, MId, D)) continue; // Check that we haven't already added this edge IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); if (EC.count(EK)) continue; // This is a new edge - add it to the graph. if (!createInterferenceEdge(G, NId, MId, C)) setDisjointAllowedRegs(G, NId, MId, D); else EC.insert(EK); } // Finally, add Cur to the Active set. Active.insert(Cur); } } private: // Create an Interference edge and add it to the graph, unless it is // a null matrix, meaning the nodes' allowed registers do not have any // interference. This case occurs frequently between integer and floating // point registers for example. // return true iff both nodes interferes. bool createInterferenceEdge(PBQPRAGraph &G, PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, IMatrixCache &C) { const TargetRegisterInfo &TRI = *G.getMetadata().MF.getSubtarget().getRegisterInfo(); const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); // Try looking the edge costs up in the IMatrixCache first. IKey K(&NRegs, &MRegs); IMatrixCache::iterator I = C.find(K); if (I != C.end()) { G.addEdgeBypassingCostAllocator(NId, MId, I->second); return true; } PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); bool NodesInterfere = false; for (unsigned I = 0; I != NRegs.size(); ++I) { unsigned PRegN = NRegs[I]; for (unsigned J = 0; J != MRegs.size(); ++J) { unsigned PRegM = MRegs[J]; if (TRI.regsOverlap(PRegN, PRegM)) { M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); NodesInterfere = true; } } } if (!NodesInterfere) return false; PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); C[K] = G.getEdgeCostsPtr(EId); return true; } }; class Coalescing : public PBQPRAConstraint { public: void apply(PBQPRAGraph &G) override { MachineFunction &MF = G.getMetadata().MF; MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); // Scan the machine function and add a coalescing cost whenever CoalescerPair // gives the Ok. for (const auto &MBB : MF) { for (const auto &MI : MBB) { // Skip not-coalescable or already coalesced copies. if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) continue; unsigned DstReg = CP.getDstReg(); unsigned SrcReg = CP.getSrcReg(); const float Scale = 1.0f / MBFI.getEntryFreq(); PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale; if (CP.isPhys()) { if (!MF.getRegInfo().isAllocatable(DstReg)) continue; PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = G.getNodeMetadata(NId).getAllowedRegs(); unsigned PRegOpt = 0; while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) ++PRegOpt; if (PRegOpt < Allowed.size()) { PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); NewCosts[PRegOpt + 1] -= CBenefit; G.setNodeCosts(NId, std::move(NewCosts)); } } else { PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = &G.getNodeMetadata(N1Id).getAllowedRegs(); const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = &G.getNodeMetadata(N2Id).getAllowedRegs(); PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); if (EId == G.invalidEdgeId()) { PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, Allowed2->size() + 1, 0); addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); G.addEdge(N1Id, N2Id, std::move(Costs)); } else { if (G.getEdgeNode1Id(EId) == N2Id) { std::swap(N1Id, N2Id); std::swap(Allowed1, Allowed2); } PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); G.updateEdgeCosts(EId, std::move(Costs)); } } } } } private: void addVirtRegCoalesce( PBQPRAGraph::RawMatrix &CostMat, const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, PBQP::PBQPNum Benefit) { assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); for (unsigned I = 0; I != Allowed1.size(); ++I) { unsigned PReg1 = Allowed1[I]; for (unsigned J = 0; J != Allowed2.size(); ++J) { unsigned PReg2 = Allowed2[J]; if (PReg1 == PReg2) CostMat[I + 1][J + 1] -= Benefit; } } } }; } // End anonymous namespace. // Out-of-line destructor/anchor for PBQPRAConstraint. PBQPRAConstraint::~PBQPRAConstraint() {} void PBQPRAConstraint::anchor() {} void PBQPRAConstraintList::anchor() {} void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { au.setPreservesCFG(); au.addRequired<AAResultsWrapperPass>(); au.addPreserved<AAResultsWrapperPass>(); au.addRequired<SlotIndexes>(); au.addPreserved<SlotIndexes>(); au.addRequired<LiveIntervals>(); au.addPreserved<LiveIntervals>(); //au.addRequiredID(SplitCriticalEdgesID); if (customPassID) au.addRequiredID(*customPassID); au.addRequired<LiveStacks>(); au.addPreserved<LiveStacks>(); au.addRequired<MachineBlockFrequencyInfo>(); au.addPreserved<MachineBlockFrequencyInfo>(); au.addRequired<MachineLoopInfo>(); au.addPreserved<MachineLoopInfo>(); au.addRequired<MachineDominatorTree>(); au.addPreserved<MachineDominatorTree>(); au.addRequired<VirtRegMap>(); au.addPreserved<VirtRegMap>(); MachineFunctionPass::getAnalysisUsage(au); } void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS) { const MachineRegisterInfo &MRI = MF.getRegInfo(); // Iterate over all live ranges. for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { unsigned Reg = TargetRegisterInfo::index2VirtReg(I); if (MRI.reg_nodbg_empty(Reg)) continue; LiveInterval &LI = LIS.getInterval(Reg); // If this live interval is non-empty we will use pbqp to allocate it. // Empty intervals we allocate in a simple post-processing stage in // finalizeAlloc. if (!LI.empty()) { VRegsToAlloc.insert(LI.reg); } else { EmptyIntervalVRegs.insert(LI.reg); } } } static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI, const MachineFunction &MF) { const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF); for (unsigned i = 0; CSR[i] != 0; ++i) if (TRI.regsOverlap(reg, CSR[i])) return true; return false; } void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller) { MachineFunction &MF = G.getMetadata().MF; LiveIntervals &LIS = G.getMetadata().LIS; const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); const TargetRegisterInfo &TRI = *G.getMetadata().MF.getSubtarget().getRegisterInfo(); std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); while (!Worklist.empty()) { unsigned VReg = Worklist.back(); Worklist.pop_back(); const TargetRegisterClass *TRC = MRI.getRegClass(VReg); LiveInterval &VRegLI = LIS.getInterval(VReg); // Record any overlaps with regmask operands. BitVector RegMaskOverlaps; LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); // Compute an initial allowed set for the current vreg. std::vector<unsigned> VRegAllowed; ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { unsigned PReg = RawPRegOrder[I]; if (MRI.isReserved(PReg)) continue; // vregLI crosses a regmask operand that clobbers preg. if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) continue; // vregLI overlaps fixed regunit interference. bool Interference = false; for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { Interference = true; break; } } if (Interference) continue; // preg is usable for this virtual register. VRegAllowed.push_back(PReg); } // Check for vregs that have no allowed registers. These should be // pre-spilled and the new vregs added to the worklist. if (VRegAllowed.empty()) { SmallVector<unsigned, 8> NewVRegs; spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end()); continue; } PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); // Tweak cost of callee saved registers, as using then force spilling and // restoring them. This would only happen in the prologue / epilogue though. for (unsigned i = 0; i != VRegAllowed.size(); ++i) if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) NodeCosts[1 + i] += 1.0; PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); G.getNodeMetadata(NId).setVReg(VReg); G.getNodeMetadata(NId).setAllowedRegs( G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); G.getMetadata().setNodeIdForVReg(VReg, NId); } } void RegAllocPBQP::spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals, MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, Spiller &VRegSpiller) { VRegsToAlloc.erase(VReg); LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM); VRegSpiller.spill(LRE); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); (void)TRI; DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " << LRE.getParent().weight << ", New vregs: "); // Copy any newly inserted live intervals into the list of regs to // allocate. for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); I != E; ++I) { const LiveInterval &LI = LIS.getInterval(*I); assert(!LI.empty() && "Empty spill range."); DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); VRegsToAlloc.insert(LI.reg); } DEBUG(dbgs() << ")\n"); } bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, const PBQP::Solution &Solution, VirtRegMap &VRM, Spiller &VRegSpiller) { MachineFunction &MF = G.getMetadata().MF; LiveIntervals &LIS = G.getMetadata().LIS; const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); (void)TRI; // Set to true if we have any spills bool AnotherRoundNeeded = false; // Clear the existing allocation. VRM.clearAllVirt(); // Iterate over the nodes mapping the PBQP solution to a register // assignment. for (auto NId : G.nodeIds()) { unsigned VReg = G.getNodeMetadata(NId).getVReg(); unsigned AllocOption = Solution.getSelection(NId); if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1]; DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " << TRI.getName(PReg) << "\n"); assert(PReg != 0 && "Invalid preg selected."); VRM.assignVirt2Phys(VReg, PReg); } else { // Spill VReg. If this introduces new intervals we'll need another round // of allocation. SmallVector<unsigned, 8> NewVRegs; spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); AnotherRoundNeeded |= !NewVRegs.empty(); } } return !AnotherRoundNeeded; } void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM) const { MachineRegisterInfo &MRI = MF.getRegInfo(); // First allocate registers for the empty intervals. for (RegSet::const_iterator I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); I != E; ++I) { LiveInterval &LI = LIS.getInterval(*I); unsigned PReg = MRI.getSimpleHint(LI.reg); if (PReg == 0) { const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); PReg = RC.getRawAllocationOrder(MF).front(); } VRM.assignVirt2Phys(LI.reg, PReg); } } static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size, unsigned NumInstr) { // All intervals have a spill weight that is mostly proportional to the number // of uses, with uses in loops having a bigger weight. return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1); } bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { LiveIntervals &LIS = getAnalysis<LiveIntervals>(); MachineBlockFrequencyInfo &MBFI = getAnalysis<MachineBlockFrequencyInfo>(); VirtRegMap &VRM = getAnalysis<VirtRegMap>(); calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(), MBFI, normalizePBQPSpillWeight); std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); MF.getRegInfo().freezeReservedRegs(MF); DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); // Allocator main loop: // // * Map current regalloc problem to a PBQP problem // * Solve the PBQP problem // * Map the solution back to a register allocation // * Spill if necessary // // This process is continued till no more spills are generated. // Find the vreg intervals in need of allocation. findVRegIntervalsToAlloc(MF, LIS); #ifndef NDEBUG const Function &F = *MF.getFunction(); std::string FullyQualifiedName = F.getParent()->getModuleIdentifier() + "." + F.getName().str(); #endif // If there are non-empty intervals allocate them using pbqp. if (!VRegsToAlloc.empty()) { const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = llvm::make_unique<PBQPRAConstraintList>(); ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>()); ConstraintsRoot->addConstraint(llvm::make_unique<Interference>()); if (PBQPCoalescing) ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>()); ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); bool PBQPAllocComplete = false; unsigned Round = 0; while (!PBQPAllocComplete) { DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); initializeGraph(G, VRM, *VRegSpiller); ConstraintsRoot->apply(G); #ifndef NDEBUG if (PBQPDumpGraphs) { std::ostringstream RS; RS << Round; std::string GraphFileName = FullyQualifiedName + "." + RS.str() + ".pbqpgraph"; std::error_code EC; raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" << GraphFileName << "\"\n"); G.dump(OS); } #endif PBQP::Solution Solution = PBQP::RegAlloc::solve(G); PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); ++Round; } } // Finalise allocation, allocate empty ranges. finalizeAlloc(MF, LIS, VRM); VRegsToAlloc.clear(); EmptyIntervalVRegs.clear(); DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); return true; } /// Create Printable object for node and register info. static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, const PBQP::RegAlloc::PBQPRAGraph &G) { return Printable([NId, &G](raw_ostream &OS) { const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); unsigned VReg = G.getNodeMetadata(NId).getVReg(); const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')'; }); } void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { for (auto NId : nodeIds()) { const Vector &Costs = getNodeCosts(NId); assert(Costs.getLength() != 0 && "Empty vector in graph."); OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; } OS << '\n'; for (auto EId : edgeIds()) { NodeId N1Id = getEdgeNode1Id(EId); NodeId N2Id = getEdgeNode2Id(EId); assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); const Matrix &M = getEdgeCosts(EId); assert(M.getRows() != 0 && "No rows in matrix."); assert(M.getCols() != 0 && "No cols in matrix."); OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; OS << M << '\n'; } } void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); } void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { OS << "graph {\n"; for (auto NId : nodeIds()) { OS << " node" << NId << " [ label=\"" << PrintNodeInfo(NId, *this) << "\\n" << getNodeCosts(NId) << "\" ]\n"; } OS << " edge [ len=" << nodeIds().size() << " ]\n"; for (auto EId : edgeIds()) { OS << " node" << getEdgeNode1Id(EId) << " -- node" << getEdgeNode2Id(EId) << " [ label=\""; const Matrix &EdgeCosts = getEdgeCosts(EId); for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { OS << EdgeCosts.getRowAsVector(i) << "\\n"; } OS << "\" ]\n"; } OS << "}\n"; } FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { return new RegAllocPBQP(customPassID); } FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { return createPBQPRegisterAllocator(); } #undef DEBUG_TYPE