Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/CodeGen/TargetLoweringBase.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the TargetLoweringBase class. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetLowering.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Mangler.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <cctype> using namespace llvm; static cl::opt<bool> JumpIsExpensiveOverride( "jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden); /// InitLibcallNames - Set default libcall names. /// static void InitLibcallNames(const char **Names, const Triple &TT) { Names[RTLIB::SHL_I16] = "__ashlhi3"; Names[RTLIB::SHL_I32] = "__ashlsi3"; Names[RTLIB::SHL_I64] = "__ashldi3"; Names[RTLIB::SHL_I128] = "__ashlti3"; Names[RTLIB::SRL_I16] = "__lshrhi3"; Names[RTLIB::SRL_I32] = "__lshrsi3"; Names[RTLIB::SRL_I64] = "__lshrdi3"; Names[RTLIB::SRL_I128] = "__lshrti3"; Names[RTLIB::SRA_I16] = "__ashrhi3"; Names[RTLIB::SRA_I32] = "__ashrsi3"; Names[RTLIB::SRA_I64] = "__ashrdi3"; Names[RTLIB::SRA_I128] = "__ashrti3"; Names[RTLIB::MUL_I8] = "__mulqi3"; Names[RTLIB::MUL_I16] = "__mulhi3"; Names[RTLIB::MUL_I32] = "__mulsi3"; Names[RTLIB::MUL_I64] = "__muldi3"; Names[RTLIB::MUL_I128] = "__multi3"; Names[RTLIB::MULO_I32] = "__mulosi4"; Names[RTLIB::MULO_I64] = "__mulodi4"; Names[RTLIB::MULO_I128] = "__muloti4"; Names[RTLIB::SDIV_I8] = "__divqi3"; Names[RTLIB::SDIV_I16] = "__divhi3"; Names[RTLIB::SDIV_I32] = "__divsi3"; Names[RTLIB::SDIV_I64] = "__divdi3"; Names[RTLIB::SDIV_I128] = "__divti3"; Names[RTLIB::UDIV_I8] = "__udivqi3"; Names[RTLIB::UDIV_I16] = "__udivhi3"; Names[RTLIB::UDIV_I32] = "__udivsi3"; Names[RTLIB::UDIV_I64] = "__udivdi3"; Names[RTLIB::UDIV_I128] = "__udivti3"; Names[RTLIB::SREM_I8] = "__modqi3"; Names[RTLIB::SREM_I16] = "__modhi3"; Names[RTLIB::SREM_I32] = "__modsi3"; Names[RTLIB::SREM_I64] = "__moddi3"; Names[RTLIB::SREM_I128] = "__modti3"; Names[RTLIB::UREM_I8] = "__umodqi3"; Names[RTLIB::UREM_I16] = "__umodhi3"; Names[RTLIB::UREM_I32] = "__umodsi3"; Names[RTLIB::UREM_I64] = "__umoddi3"; Names[RTLIB::UREM_I128] = "__umodti3"; // These are generally not available. Names[RTLIB::SDIVREM_I8] = nullptr; Names[RTLIB::SDIVREM_I16] = nullptr; Names[RTLIB::SDIVREM_I32] = nullptr; Names[RTLIB::SDIVREM_I64] = nullptr; Names[RTLIB::SDIVREM_I128] = nullptr; Names[RTLIB::UDIVREM_I8] = nullptr; Names[RTLIB::UDIVREM_I16] = nullptr; Names[RTLIB::UDIVREM_I32] = nullptr; Names[RTLIB::UDIVREM_I64] = nullptr; Names[RTLIB::UDIVREM_I128] = nullptr; Names[RTLIB::NEG_I32] = "__negsi2"; Names[RTLIB::NEG_I64] = "__negdi2"; Names[RTLIB::ADD_F32] = "__addsf3"; Names[RTLIB::ADD_F64] = "__adddf3"; Names[RTLIB::ADD_F80] = "__addxf3"; Names[RTLIB::ADD_F128] = "__addtf3"; Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; Names[RTLIB::SUB_F32] = "__subsf3"; Names[RTLIB::SUB_F64] = "__subdf3"; Names[RTLIB::SUB_F80] = "__subxf3"; Names[RTLIB::SUB_F128] = "__subtf3"; Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; Names[RTLIB::MUL_F32] = "__mulsf3"; Names[RTLIB::MUL_F64] = "__muldf3"; Names[RTLIB::MUL_F80] = "__mulxf3"; Names[RTLIB::MUL_F128] = "__multf3"; Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; Names[RTLIB::DIV_F32] = "__divsf3"; Names[RTLIB::DIV_F64] = "__divdf3"; Names[RTLIB::DIV_F80] = "__divxf3"; Names[RTLIB::DIV_F128] = "__divtf3"; Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; Names[RTLIB::REM_F32] = "fmodf"; Names[RTLIB::REM_F64] = "fmod"; Names[RTLIB::REM_F80] = "fmodl"; Names[RTLIB::REM_F128] = "fmodl"; Names[RTLIB::REM_PPCF128] = "fmodl"; Names[RTLIB::FMA_F32] = "fmaf"; Names[RTLIB::FMA_F64] = "fma"; Names[RTLIB::FMA_F80] = "fmal"; Names[RTLIB::FMA_F128] = "fmal"; Names[RTLIB::FMA_PPCF128] = "fmal"; Names[RTLIB::POWI_F32] = "__powisf2"; Names[RTLIB::POWI_F64] = "__powidf2"; Names[RTLIB::POWI_F80] = "__powixf2"; Names[RTLIB::POWI_F128] = "__powitf2"; Names[RTLIB::POWI_PPCF128] = "__powitf2"; Names[RTLIB::SQRT_F32] = "sqrtf"; Names[RTLIB::SQRT_F64] = "sqrt"; Names[RTLIB::SQRT_F80] = "sqrtl"; Names[RTLIB::SQRT_F128] = "sqrtl"; Names[RTLIB::SQRT_PPCF128] = "sqrtl"; Names[RTLIB::LOG_F32] = "logf"; Names[RTLIB::LOG_F64] = "log"; Names[RTLIB::LOG_F80] = "logl"; Names[RTLIB::LOG_F128] = "logl"; Names[RTLIB::LOG_PPCF128] = "logl"; Names[RTLIB::LOG2_F32] = "log2f"; Names[RTLIB::LOG2_F64] = "log2"; Names[RTLIB::LOG2_F80] = "log2l"; Names[RTLIB::LOG2_F128] = "log2l"; Names[RTLIB::LOG2_PPCF128] = "log2l"; Names[RTLIB::LOG10_F32] = "log10f"; Names[RTLIB::LOG10_F64] = "log10"; Names[RTLIB::LOG10_F80] = "log10l"; Names[RTLIB::LOG10_F128] = "log10l"; Names[RTLIB::LOG10_PPCF128] = "log10l"; Names[RTLIB::EXP_F32] = "expf"; Names[RTLIB::EXP_F64] = "exp"; Names[RTLIB::EXP_F80] = "expl"; Names[RTLIB::EXP_F128] = "expl"; Names[RTLIB::EXP_PPCF128] = "expl"; Names[RTLIB::EXP2_F32] = "exp2f"; Names[RTLIB::EXP2_F64] = "exp2"; Names[RTLIB::EXP2_F80] = "exp2l"; Names[RTLIB::EXP2_F128] = "exp2l"; Names[RTLIB::EXP2_PPCF128] = "exp2l"; Names[RTLIB::SIN_F32] = "sinf"; Names[RTLIB::SIN_F64] = "sin"; Names[RTLIB::SIN_F80] = "sinl"; Names[RTLIB::SIN_F128] = "sinl"; Names[RTLIB::SIN_PPCF128] = "sinl"; Names[RTLIB::COS_F32] = "cosf"; Names[RTLIB::COS_F64] = "cos"; Names[RTLIB::COS_F80] = "cosl"; Names[RTLIB::COS_F128] = "cosl"; Names[RTLIB::COS_PPCF128] = "cosl"; Names[RTLIB::POW_F32] = "powf"; Names[RTLIB::POW_F64] = "pow"; Names[RTLIB::POW_F80] = "powl"; Names[RTLIB::POW_F128] = "powl"; Names[RTLIB::POW_PPCF128] = "powl"; Names[RTLIB::CEIL_F32] = "ceilf"; Names[RTLIB::CEIL_F64] = "ceil"; Names[RTLIB::CEIL_F80] = "ceill"; Names[RTLIB::CEIL_F128] = "ceill"; Names[RTLIB::CEIL_PPCF128] = "ceill"; Names[RTLIB::TRUNC_F32] = "truncf"; Names[RTLIB::TRUNC_F64] = "trunc"; Names[RTLIB::TRUNC_F80] = "truncl"; Names[RTLIB::TRUNC_F128] = "truncl"; Names[RTLIB::TRUNC_PPCF128] = "truncl"; Names[RTLIB::RINT_F32] = "rintf"; Names[RTLIB::RINT_F64] = "rint"; Names[RTLIB::RINT_F80] = "rintl"; Names[RTLIB::RINT_F128] = "rintl"; Names[RTLIB::RINT_PPCF128] = "rintl"; Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; Names[RTLIB::NEARBYINT_F64] = "nearbyint"; Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; Names[RTLIB::ROUND_F32] = "roundf"; Names[RTLIB::ROUND_F64] = "round"; Names[RTLIB::ROUND_F80] = "roundl"; Names[RTLIB::ROUND_F128] = "roundl"; Names[RTLIB::ROUND_PPCF128] = "roundl"; Names[RTLIB::FLOOR_F32] = "floorf"; Names[RTLIB::FLOOR_F64] = "floor"; Names[RTLIB::FLOOR_F80] = "floorl"; Names[RTLIB::FLOOR_F128] = "floorl"; Names[RTLIB::FLOOR_PPCF128] = "floorl"; Names[RTLIB::FMIN_F32] = "fminf"; Names[RTLIB::FMIN_F64] = "fmin"; Names[RTLIB::FMIN_F80] = "fminl"; Names[RTLIB::FMIN_F128] = "fminl"; Names[RTLIB::FMIN_PPCF128] = "fminl"; Names[RTLIB::FMAX_F32] = "fmaxf"; Names[RTLIB::FMAX_F64] = "fmax"; Names[RTLIB::FMAX_F80] = "fmaxl"; Names[RTLIB::FMAX_F128] = "fmaxl"; Names[RTLIB::FMAX_PPCF128] = "fmaxl"; Names[RTLIB::ROUND_F32] = "roundf"; Names[RTLIB::ROUND_F64] = "round"; Names[RTLIB::ROUND_F80] = "roundl"; Names[RTLIB::ROUND_F128] = "roundl"; Names[RTLIB::ROUND_PPCF128] = "roundl"; Names[RTLIB::COPYSIGN_F32] = "copysignf"; Names[RTLIB::COPYSIGN_F64] = "copysign"; Names[RTLIB::COPYSIGN_F80] = "copysignl"; Names[RTLIB::COPYSIGN_F128] = "copysignl"; Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2"; Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2"; Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2"; Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2"; Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; Names[RTLIB::OEQ_F32] = "__eqsf2"; Names[RTLIB::OEQ_F64] = "__eqdf2"; Names[RTLIB::OEQ_F128] = "__eqtf2"; Names[RTLIB::UNE_F32] = "__nesf2"; Names[RTLIB::UNE_F64] = "__nedf2"; Names[RTLIB::UNE_F128] = "__netf2"; Names[RTLIB::OGE_F32] = "__gesf2"; Names[RTLIB::OGE_F64] = "__gedf2"; Names[RTLIB::OGE_F128] = "__getf2"; Names[RTLIB::OLT_F32] = "__ltsf2"; Names[RTLIB::OLT_F64] = "__ltdf2"; Names[RTLIB::OLT_F128] = "__lttf2"; Names[RTLIB::OLE_F32] = "__lesf2"; Names[RTLIB::OLE_F64] = "__ledf2"; Names[RTLIB::OLE_F128] = "__letf2"; Names[RTLIB::OGT_F32] = "__gtsf2"; Names[RTLIB::OGT_F64] = "__gtdf2"; Names[RTLIB::OGT_F128] = "__gttf2"; Names[RTLIB::UO_F32] = "__unordsf2"; Names[RTLIB::UO_F64] = "__unorddf2"; Names[RTLIB::UO_F128] = "__unordtf2"; Names[RTLIB::O_F32] = "__unordsf2"; Names[RTLIB::O_F64] = "__unorddf2"; Names[RTLIB::O_F128] = "__unordtf2"; Names[RTLIB::MEMCPY] = "memcpy"; Names[RTLIB::MEMMOVE] = "memmove"; Names[RTLIB::MEMSET] = "memset"; Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16"; Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16"; Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16"; Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16"; Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16"; Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16"; Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16"; Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16"; Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1"; Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2"; Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4"; Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8"; Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16"; Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1"; Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2"; Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4"; Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8"; Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16"; Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1"; Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2"; Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4"; Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8"; Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16"; Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1"; Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2"; Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4"; Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8"; Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16"; if (TT.getEnvironment() == Triple::GNU) { Names[RTLIB::SINCOS_F32] = "sincosf"; Names[RTLIB::SINCOS_F64] = "sincos"; Names[RTLIB::SINCOS_F80] = "sincosl"; Names[RTLIB::SINCOS_F128] = "sincosl"; Names[RTLIB::SINCOS_PPCF128] = "sincosl"; } else { // These are generally not available. Names[RTLIB::SINCOS_F32] = nullptr; Names[RTLIB::SINCOS_F64] = nullptr; Names[RTLIB::SINCOS_F80] = nullptr; Names[RTLIB::SINCOS_F128] = nullptr; Names[RTLIB::SINCOS_PPCF128] = nullptr; } if (!TT.isOSOpenBSD()) { Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail"; } else { // These are generally not available. Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr; } // For f16/f32 conversions, Darwin uses the standard naming scheme, instead // of the gnueabi-style __gnu_*_ieee. // FIXME: What about other targets? if (TT.isOSDarwin()) { Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2"; Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2"; } } /// InitLibcallCallingConvs - Set default libcall CallingConvs. /// static void InitLibcallCallingConvs(CallingConv::ID *CCs) { for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { CCs[i] = CallingConv::C; } } /// getFPEXT - Return the FPEXT_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { if (OpVT == MVT::f16) { if (RetVT == MVT::f32) return FPEXT_F16_F32; } else if (OpVT == MVT::f32) { if (RetVT == MVT::f64) return FPEXT_F32_F64; if (RetVT == MVT::f128) return FPEXT_F32_F128; } else if (OpVT == MVT::f64) { if (RetVT == MVT::f128) return FPEXT_F64_F128; } return UNKNOWN_LIBCALL; } /// getFPROUND - Return the FPROUND_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { if (RetVT == MVT::f16) { if (OpVT == MVT::f32) return FPROUND_F32_F16; if (OpVT == MVT::f64) return FPROUND_F64_F16; if (OpVT == MVT::f80) return FPROUND_F80_F16; if (OpVT == MVT::f128) return FPROUND_F128_F16; if (OpVT == MVT::ppcf128) return FPROUND_PPCF128_F16; } else if (RetVT == MVT::f32) { if (OpVT == MVT::f64) return FPROUND_F64_F32; if (OpVT == MVT::f80) return FPROUND_F80_F32; if (OpVT == MVT::f128) return FPROUND_F128_F32; if (OpVT == MVT::ppcf128) return FPROUND_PPCF128_F32; } else if (RetVT == MVT::f64) { if (OpVT == MVT::f80) return FPROUND_F80_F64; if (OpVT == MVT::f128) return FPROUND_F128_F64; if (OpVT == MVT::ppcf128) return FPROUND_PPCF128_F64; } return UNKNOWN_LIBCALL; } /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { if (OpVT == MVT::f32) { if (RetVT == MVT::i32) return FPTOSINT_F32_I32; if (RetVT == MVT::i64) return FPTOSINT_F32_I64; if (RetVT == MVT::i128) return FPTOSINT_F32_I128; } else if (OpVT == MVT::f64) { if (RetVT == MVT::i32) return FPTOSINT_F64_I32; if (RetVT == MVT::i64) return FPTOSINT_F64_I64; if (RetVT == MVT::i128) return FPTOSINT_F64_I128; } else if (OpVT == MVT::f80) { if (RetVT == MVT::i32) return FPTOSINT_F80_I32; if (RetVT == MVT::i64) return FPTOSINT_F80_I64; if (RetVT == MVT::i128) return FPTOSINT_F80_I128; } else if (OpVT == MVT::f128) { if (RetVT == MVT::i32) return FPTOSINT_F128_I32; if (RetVT == MVT::i64) return FPTOSINT_F128_I64; if (RetVT == MVT::i128) return FPTOSINT_F128_I128; } else if (OpVT == MVT::ppcf128) { if (RetVT == MVT::i32) return FPTOSINT_PPCF128_I32; if (RetVT == MVT::i64) return FPTOSINT_PPCF128_I64; if (RetVT == MVT::i128) return FPTOSINT_PPCF128_I128; } return UNKNOWN_LIBCALL; } /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { if (OpVT == MVT::f32) { if (RetVT == MVT::i32) return FPTOUINT_F32_I32; if (RetVT == MVT::i64) return FPTOUINT_F32_I64; if (RetVT == MVT::i128) return FPTOUINT_F32_I128; } else if (OpVT == MVT::f64) { if (RetVT == MVT::i32) return FPTOUINT_F64_I32; if (RetVT == MVT::i64) return FPTOUINT_F64_I64; if (RetVT == MVT::i128) return FPTOUINT_F64_I128; } else if (OpVT == MVT::f80) { if (RetVT == MVT::i32) return FPTOUINT_F80_I32; if (RetVT == MVT::i64) return FPTOUINT_F80_I64; if (RetVT == MVT::i128) return FPTOUINT_F80_I128; } else if (OpVT == MVT::f128) { if (RetVT == MVT::i32) return FPTOUINT_F128_I32; if (RetVT == MVT::i64) return FPTOUINT_F128_I64; if (RetVT == MVT::i128) return FPTOUINT_F128_I128; } else if (OpVT == MVT::ppcf128) { if (RetVT == MVT::i32) return FPTOUINT_PPCF128_I32; if (RetVT == MVT::i64) return FPTOUINT_PPCF128_I64; if (RetVT == MVT::i128) return FPTOUINT_PPCF128_I128; } return UNKNOWN_LIBCALL; } /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { if (OpVT == MVT::i32) { if (RetVT == MVT::f32) return SINTTOFP_I32_F32; if (RetVT == MVT::f64) return SINTTOFP_I32_F64; if (RetVT == MVT::f80) return SINTTOFP_I32_F80; if (RetVT == MVT::f128) return SINTTOFP_I32_F128; if (RetVT == MVT::ppcf128) return SINTTOFP_I32_PPCF128; } else if (OpVT == MVT::i64) { if (RetVT == MVT::f32) return SINTTOFP_I64_F32; if (RetVT == MVT::f64) return SINTTOFP_I64_F64; if (RetVT == MVT::f80) return SINTTOFP_I64_F80; if (RetVT == MVT::f128) return SINTTOFP_I64_F128; if (RetVT == MVT::ppcf128) return SINTTOFP_I64_PPCF128; } else if (OpVT == MVT::i128) { if (RetVT == MVT::f32) return SINTTOFP_I128_F32; if (RetVT == MVT::f64) return SINTTOFP_I128_F64; if (RetVT == MVT::f80) return SINTTOFP_I128_F80; if (RetVT == MVT::f128) return SINTTOFP_I128_F128; if (RetVT == MVT::ppcf128) return SINTTOFP_I128_PPCF128; } return UNKNOWN_LIBCALL; } /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { if (OpVT == MVT::i32) { if (RetVT == MVT::f32) return UINTTOFP_I32_F32; if (RetVT == MVT::f64) return UINTTOFP_I32_F64; if (RetVT == MVT::f80) return UINTTOFP_I32_F80; if (RetVT == MVT::f128) return UINTTOFP_I32_F128; if (RetVT == MVT::ppcf128) return UINTTOFP_I32_PPCF128; } else if (OpVT == MVT::i64) { if (RetVT == MVT::f32) return UINTTOFP_I64_F32; if (RetVT == MVT::f64) return UINTTOFP_I64_F64; if (RetVT == MVT::f80) return UINTTOFP_I64_F80; if (RetVT == MVT::f128) return UINTTOFP_I64_F128; if (RetVT == MVT::ppcf128) return UINTTOFP_I64_PPCF128; } else if (OpVT == MVT::i128) { if (RetVT == MVT::f32) return UINTTOFP_I128_F32; if (RetVT == MVT::f64) return UINTTOFP_I128_F64; if (RetVT == MVT::f80) return UINTTOFP_I128_F80; if (RetVT == MVT::f128) return UINTTOFP_I128_F128; if (RetVT == MVT::ppcf128) return UINTTOFP_I128_PPCF128; } return UNKNOWN_LIBCALL; } RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) { #define OP_TO_LIBCALL(Name, Enum) \ case Name: \ switch (VT.SimpleTy) { \ default: \ return UNKNOWN_LIBCALL; \ case MVT::i8: \ return Enum##_1; \ case MVT::i16: \ return Enum##_2; \ case MVT::i32: \ return Enum##_4; \ case MVT::i64: \ return Enum##_8; \ case MVT::i128: \ return Enum##_16; \ } switch (Opc) { OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) } #undef OP_TO_LIBCALL return UNKNOWN_LIBCALL; } /// InitCmpLibcallCCs - Set default comparison libcall CC. /// static void InitCmpLibcallCCs(ISD::CondCode *CCs) { memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); CCs[RTLIB::OEQ_F32] = ISD::SETEQ; CCs[RTLIB::OEQ_F64] = ISD::SETEQ; CCs[RTLIB::OEQ_F128] = ISD::SETEQ; CCs[RTLIB::UNE_F32] = ISD::SETNE; CCs[RTLIB::UNE_F64] = ISD::SETNE; CCs[RTLIB::UNE_F128] = ISD::SETNE; CCs[RTLIB::OGE_F32] = ISD::SETGE; CCs[RTLIB::OGE_F64] = ISD::SETGE; CCs[RTLIB::OGE_F128] = ISD::SETGE; CCs[RTLIB::OLT_F32] = ISD::SETLT; CCs[RTLIB::OLT_F64] = ISD::SETLT; CCs[RTLIB::OLT_F128] = ISD::SETLT; CCs[RTLIB::OLE_F32] = ISD::SETLE; CCs[RTLIB::OLE_F64] = ISD::SETLE; CCs[RTLIB::OLE_F128] = ISD::SETLE; CCs[RTLIB::OGT_F32] = ISD::SETGT; CCs[RTLIB::OGT_F64] = ISD::SETGT; CCs[RTLIB::OGT_F128] = ISD::SETGT; CCs[RTLIB::UO_F32] = ISD::SETNE; CCs[RTLIB::UO_F64] = ISD::SETNE; CCs[RTLIB::UO_F128] = ISD::SETNE; CCs[RTLIB::O_F32] = ISD::SETEQ; CCs[RTLIB::O_F64] = ISD::SETEQ; CCs[RTLIB::O_F128] = ISD::SETEQ; } /// NOTE: The TargetMachine owns TLOF. TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { initActions(); // Perform these initializations only once. MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8; MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = MaxStoresPerMemmoveOptSize = 4; UseUnderscoreSetJmp = false; UseUnderscoreLongJmp = false; SelectIsExpensive = false; HasMultipleConditionRegisters = false; HasExtractBitsInsn = false; FsqrtIsCheap = false; JumpIsExpensive = JumpIsExpensiveOverride; PredictableSelectIsExpensive = false; MaskAndBranchFoldingIsLegal = false; EnableExtLdPromotion = false; HasFloatingPointExceptions = true; StackPointerRegisterToSaveRestore = 0; BooleanContents = UndefinedBooleanContent; BooleanFloatContents = UndefinedBooleanContent; BooleanVectorContents = UndefinedBooleanContent; SchedPreferenceInfo = Sched::ILP; JumpBufSize = 0; JumpBufAlignment = 0; MinFunctionAlignment = 0; PrefFunctionAlignment = 0; PrefLoopAlignment = 0; GatherAllAliasesMaxDepth = 6; MinStackArgumentAlignment = 1; InsertFencesForAtomic = false; MinimumJumpTableEntries = 4; InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple()); InitCmpLibcallCCs(CmpLibcallCCs); InitLibcallCallingConvs(LibcallCallingConvs); } void TargetLoweringBase::initActions() { // All operations default to being supported. memset(OpActions, 0, sizeof(OpActions)); memset(LoadExtActions, 0, sizeof(LoadExtActions)); memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); memset(CondCodeActions, 0, sizeof(CondCodeActions)); memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); // Set default actions for various operations. for (MVT VT : MVT::all_valuetypes()) { // Default all indexed load / store to expand. for (unsigned IM = (unsigned)ISD::PRE_INC; IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { setIndexedLoadAction(IM, VT, Expand); setIndexedStoreAction(IM, VT, Expand); } // Most backends expect to see the node which just returns the value loaded. setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); // These operations default to expand. setOperationAction(ISD::FGETSIGN, VT, Expand); setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); setOperationAction(ISD::FMINNUM, VT, Expand); setOperationAction(ISD::FMAXNUM, VT, Expand); setOperationAction(ISD::FMINNAN, VT, Expand); setOperationAction(ISD::FMAXNAN, VT, Expand); setOperationAction(ISD::FMAD, VT, Expand); setOperationAction(ISD::SMIN, VT, Expand); setOperationAction(ISD::SMAX, VT, Expand); setOperationAction(ISD::UMIN, VT, Expand); setOperationAction(ISD::UMAX, VT, Expand); // Overflow operations default to expand setOperationAction(ISD::SADDO, VT, Expand); setOperationAction(ISD::SSUBO, VT, Expand); setOperationAction(ISD::UADDO, VT, Expand); setOperationAction(ISD::USUBO, VT, Expand); setOperationAction(ISD::SMULO, VT, Expand); setOperationAction(ISD::UMULO, VT, Expand); setOperationAction(ISD::BITREVERSE, VT, Expand); // These library functions default to expand. setOperationAction(ISD::FROUND, VT, Expand); // These operations default to expand for vector types. if (VT.isVector()) { setOperationAction(ISD::FCOPYSIGN, VT, Expand); setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); } // For most targets @llvm.get.dynamic.area.offest just returns 0. setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); } // Most targets ignore the @llvm.prefetch intrinsic. setOperationAction(ISD::PREFETCH, MVT::Other, Expand); // Most targets also ignore the @llvm.readcyclecounter intrinsic. setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); // ConstantFP nodes default to expand. Targets can either change this to // Legal, in which case all fp constants are legal, or use isFPImmLegal() // to optimize expansions for certain constants. setOperationAction(ISD::ConstantFP, MVT::f16, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Expand); setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f80, Expand); setOperationAction(ISD::ConstantFP, MVT::f128, Expand); // These library functions default to expand. for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { setOperationAction(ISD::FLOG , VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FEXP , VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FFLOOR, VT, Expand); setOperationAction(ISD::FMINNUM, VT, Expand); setOperationAction(ISD::FMAXNUM, VT, Expand); setOperationAction(ISD::FNEARBYINT, VT, Expand); setOperationAction(ISD::FCEIL, VT, Expand); setOperationAction(ISD::FRINT, VT, Expand); setOperationAction(ISD::FTRUNC, VT, Expand); setOperationAction(ISD::FROUND, VT, Expand); } // Default ISD::TRAP to expand (which turns it into abort). setOperationAction(ISD::TRAP, MVT::Other, Expand); // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. // setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); } MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, EVT) const { return MVT::getIntegerVT(8 * DL.getPointerSize(0)); } EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const { assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); if (LHSTy.isVector()) return LHSTy; return getScalarShiftAmountTy(DL, LHSTy); } /// canOpTrap - Returns true if the operation can trap for the value type. /// VT must be a legal type. bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { assert(isTypeLegal(VT)); switch (Op) { default: return false; case ISD::FDIV: case ISD::FREM: case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: return true; } } void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { // If the command-line option was specified, ignore this request. if (!JumpIsExpensiveOverride.getNumOccurrences()) JumpIsExpensive = isExpensive; } TargetLoweringBase::LegalizeKind TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { // If this is a simple type, use the ComputeRegisterProp mechanism. if (VT.isSimple()) { MVT SVT = VT.getSimpleVT(); assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); MVT NVT = TransformToType[SVT.SimpleTy]; LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); assert((LA == TypeLegal || LA == TypeSoftenFloat || ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && "Promote may not follow Expand or Promote"); if (LA == TypeSplitVector) return LegalizeKind(LA, EVT::getVectorVT(Context, SVT.getVectorElementType(), SVT.getVectorNumElements() / 2)); if (LA == TypeScalarizeVector) return LegalizeKind(LA, SVT.getVectorElementType()); return LegalizeKind(LA, NVT); } // Handle Extended Scalar Types. if (!VT.isVector()) { assert(VT.isInteger() && "Float types must be simple"); unsigned BitSize = VT.getSizeInBits(); // First promote to a power-of-two size, then expand if necessary. if (BitSize < 8 || !isPowerOf2_32(BitSize)) { EVT NVT = VT.getRoundIntegerType(Context); assert(NVT != VT && "Unable to round integer VT"); LegalizeKind NextStep = getTypeConversion(Context, NVT); // Avoid multi-step promotion. if (NextStep.first == TypePromoteInteger) return NextStep; // Return rounded integer type. return LegalizeKind(TypePromoteInteger, NVT); } return LegalizeKind(TypeExpandInteger, EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); } // Handle vector types. unsigned NumElts = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); // Vectors with only one element are always scalarized. if (NumElts == 1) return LegalizeKind(TypeScalarizeVector, EltVT); // Try to widen vector elements until the element type is a power of two and // promote it to a legal type later on, for example: // <3 x i8> -> <4 x i8> -> <4 x i32> if (EltVT.isInteger()) { // Vectors with a number of elements that is not a power of two are always // widened, for example <3 x i8> -> <4 x i8>. if (!VT.isPow2VectorType()) { NumElts = (unsigned)NextPowerOf2(NumElts); EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); return LegalizeKind(TypeWidenVector, NVT); } // Examine the element type. LegalizeKind LK = getTypeConversion(Context, EltVT); // If type is to be expanded, split the vector. // <4 x i140> -> <2 x i140> if (LK.first == TypeExpandInteger) return LegalizeKind(TypeSplitVector, EVT::getVectorVT(Context, EltVT, NumElts / 2)); // Promote the integer element types until a legal vector type is found // or until the element integer type is too big. If a legal type was not // found, fallback to the usual mechanism of widening/splitting the // vector. EVT OldEltVT = EltVT; while (1) { // Increase the bitwidth of the element to the next pow-of-two // (which is greater than 8 bits). EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) .getRoundIntegerType(Context); // Stop trying when getting a non-simple element type. // Note that vector elements may be greater than legal vector element // types. Example: X86 XMM registers hold 64bit element on 32bit // systems. if (!EltVT.isSimple()) break; // Build a new vector type and check if it is legal. MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); // Found a legal promoted vector type. if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) return LegalizeKind(TypePromoteInteger, EVT::getVectorVT(Context, EltVT, NumElts)); } // Reset the type to the unexpanded type if we did not find a legal vector // type with a promoted vector element type. EltVT = OldEltVT; } // Try to widen the vector until a legal type is found. // If there is no wider legal type, split the vector. while (1) { // Round up to the next power of 2. NumElts = (unsigned)NextPowerOf2(NumElts); // If there is no simple vector type with this many elements then there // cannot be a larger legal vector type. Note that this assumes that // there are no skipped intermediate vector types in the simple types. if (!EltVT.isSimple()) break; MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); if (LargerVector == MVT()) break; // If this type is legal then widen the vector. if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) return LegalizeKind(TypeWidenVector, LargerVector); } // Widen odd vectors to next power of two. if (!VT.isPow2VectorType()) { EVT NVT = VT.getPow2VectorType(Context); return LegalizeKind(TypeWidenVector, NVT); } // Vectors with illegal element types are expanded. EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); return LegalizeKind(TypeSplitVector, NVT); } static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI) { // Figure out the right, legal destination reg to copy into. unsigned NumElts = VT.getVectorNumElements(); MVT EltTy = VT.getVectorElementType(); unsigned NumVectorRegs = 1; // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we // could break down into LHS/RHS like LegalizeDAG does. if (!isPowerOf2_32(NumElts)) { NumVectorRegs = NumElts; NumElts = 1; } // Divide the input until we get to a supported size. This will always // end with a scalar if the target doesn't support vectors. while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { NumElts >>= 1; NumVectorRegs <<= 1; } NumIntermediates = NumVectorRegs; MVT NewVT = MVT::getVectorVT(EltTy, NumElts); if (!TLI->isTypeLegal(NewVT)) NewVT = EltTy; IntermediateVT = NewVT; unsigned NewVTSize = NewVT.getSizeInBits(); // Convert sizes such as i33 to i64. if (!isPowerOf2_32(NewVTSize)) NewVTSize = NextPowerOf2(NewVTSize); MVT DestVT = TLI->getRegisterType(NewVT); RegisterVT = DestVT; if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); // Otherwise, promotion or legal types use the same number of registers as // the vector decimated to the appropriate level. return NumVectorRegs; } /// isLegalRC - Return true if the value types that can be represented by the /// specified register class are all legal. bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const { for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); I != E; ++I) { if (isTypeLegal(*I)) return true; } return false; } /// Replace/modify any TargetFrameIndex operands with a targte-dependent /// sequence of memory operands that is recognized by PrologEpilogInserter. MachineBasicBlock* TargetLoweringBase::emitPatchPoint(MachineInstr *MI, MachineBasicBlock *MBB) const { MachineFunction &MF = *MI->getParent()->getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); // We're handling multiple types of operands here: // PATCHPOINT MetaArgs - live-in, read only, direct // STATEPOINT Deopt Spill - live-through, read only, indirect // STATEPOINT Deopt Alloca - live-through, read only, direct // (We're currently conservative and mark the deopt slots read/write in // practice.) // STATEPOINT GC Spill - live-through, read/write, indirect // STATEPOINT GC Alloca - live-through, read/write, direct // The live-in vs live-through is handled already (the live through ones are // all stack slots), but we need to handle the different type of stackmap // operands and memory effects here. // MI changes inside this loop as we grow operands. for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { MachineOperand &MO = MI->getOperand(OperIdx); if (!MO.isFI()) continue; // foldMemoryOperand builds a new MI after replacing a single FI operand // with the canonical set of five x86 addressing-mode operands. int FI = MO.getIndex(); MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); // Copy operands before the frame-index. for (unsigned i = 0; i < OperIdx; ++i) MIB.addOperand(MI->getOperand(i)); // Add frame index operands recognized by stackmaps.cpp if (MFI.isStatepointSpillSlotObjectIndex(FI)) { // indirect-mem-ref tag, size, #FI, offset. // Used for spills inserted by StatepointLowering. This codepath is not // used for patchpoints/stackmaps at all, for these spilling is done via // foldMemoryOperand callback only. assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); MIB.addImm(StackMaps::IndirectMemRefOp); MIB.addImm(MFI.getObjectSize(FI)); MIB.addOperand(MI->getOperand(OperIdx)); MIB.addImm(0); } else { // direct-mem-ref tag, #FI, offset. // Used by patchpoint, and direct alloca arguments to statepoints MIB.addImm(StackMaps::DirectMemRefOp); MIB.addOperand(MI->getOperand(OperIdx)); MIB.addImm(0); } // Copy the operands after the frame index. for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) MIB.addOperand(MI->getOperand(i)); // Inherit previous memory operands. MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); // Add a new memory operand for this FI. assert(MFI.getObjectOffset(FI) != -1); unsigned Flags = MachineMemOperand::MOLoad; if (MI->getOpcode() == TargetOpcode::STATEPOINT) { Flags |= MachineMemOperand::MOStore; Flags |= MachineMemOperand::MOVolatile; } MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FI), Flags, MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); MIB->addMemOperand(MF, MMO); // Replace the instruction and update the operand index. MBB->insert(MachineBasicBlock::iterator(MI), MIB); OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; MI->eraseFromParent(); MI = MIB; } return MBB; } /// findRepresentativeClass - Return the largest legal super-reg register class /// of the register class for the specified type and its associated "cost". // This function is in TargetLowering because it uses RegClassForVT which would // need to be moved to TargetRegisterInfo and would necessitate moving // isTypeLegal over as well - a massive change that would just require // TargetLowering having a TargetRegisterInfo class member that it would use. std::pair<const TargetRegisterClass *, uint8_t> TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const { const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; if (!RC) return std::make_pair(RC, 0); // Compute the set of all super-register classes. BitVector SuperRegRC(TRI->getNumRegClasses()); for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) SuperRegRC.setBitsInMask(RCI.getMask()); // Find the first legal register class with the largest spill size. const TargetRegisterClass *BestRC = RC; for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) { const TargetRegisterClass *SuperRC = TRI->getRegClass(i); // We want the largest possible spill size. if (SuperRC->getSize() <= BestRC->getSize()) continue; if (!isLegalRC(SuperRC)) continue; BestRC = SuperRC; } return std::make_pair(BestRC, 1); } /// computeRegisterProperties - Once all of the register classes are added, /// this allows us to compute derived properties we expose. void TargetLoweringBase::computeRegisterProperties( const TargetRegisterInfo *TRI) { static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, "Too many value types for ValueTypeActions to hold!"); // Everything defaults to needing one register. for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { NumRegistersForVT[i] = 1; RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; } // ...except isVoid, which doesn't need any registers. NumRegistersForVT[MVT::isVoid] = 0; // Find the largest integer register class. unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); // Every integer value type larger than this largest register takes twice as // many registers to represent as the previous ValueType. for (unsigned ExpandedReg = LargestIntReg + 1; ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, TypeExpandInteger); } // Inspect all of the ValueType's smaller than the largest integer // register to see which ones need promotion. unsigned LegalIntReg = LargestIntReg; for (unsigned IntReg = LargestIntReg - 1; IntReg >= (unsigned)MVT::i1; --IntReg) { MVT IVT = (MVT::SimpleValueType)IntReg; if (isTypeLegal(IVT)) { LegalIntReg = IntReg; } else { RegisterTypeForVT[IntReg] = TransformToType[IntReg] = (const MVT::SimpleValueType)LegalIntReg; ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); } } // ppcf128 type is really two f64's. if (!isTypeLegal(MVT::ppcf128)) { NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; RegisterTypeForVT[MVT::ppcf128] = MVT::f64; TransformToType[MVT::ppcf128] = MVT::f64; ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); } // Decide how to handle f128. If the target does not have native f128 support, // expand it to i128 and we will be generating soft float library calls. if (!isTypeLegal(MVT::f128)) { NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; TransformToType[MVT::f128] = MVT::i128; ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); } // Decide how to handle f64. If the target does not have native f64 support, // expand it to i64 and we will be generating soft float library calls. if (!isTypeLegal(MVT::f64)) { NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; TransformToType[MVT::f64] = MVT::i64; ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); } // Decide how to handle f32. If the target does not have native f32 support, // expand it to i32 and we will be generating soft float library calls. if (!isTypeLegal(MVT::f32)) { NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; TransformToType[MVT::f32] = MVT::i32; ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); } // Decide how to handle f16. If the target does not have native f16 support, // promote it to f32, because there are no f16 library calls (except for // conversions). if (!isTypeLegal(MVT::f16)) { NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; TransformToType[MVT::f16] = MVT::f32; ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); } // Loop over all of the vector value types to see which need transformations. for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { MVT VT = (MVT::SimpleValueType) i; if (isTypeLegal(VT)) continue; MVT EltVT = VT.getVectorElementType(); unsigned NElts = VT.getVectorNumElements(); bool IsLegalWiderType = false; LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); switch (PreferredAction) { case TypePromoteInteger: { // Try to promote the elements of integer vectors. If no legal // promotion was found, fall through to the widen-vector method. for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { MVT SVT = (MVT::SimpleValueType) nVT; // Promote vectors of integers to vectors with the same number // of elements, with a wider element type. if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { TransformToType[i] = SVT; RegisterTypeForVT[i] = SVT; NumRegistersForVT[i] = 1; ValueTypeActions.setTypeAction(VT, TypePromoteInteger); IsLegalWiderType = true; break; } } if (IsLegalWiderType) break; } case TypeWidenVector: { // Try to widen the vector. for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { MVT SVT = (MVT::SimpleValueType) nVT; if (SVT.getVectorElementType() == EltVT && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { TransformToType[i] = SVT; RegisterTypeForVT[i] = SVT; NumRegistersForVT[i] = 1; ValueTypeActions.setTypeAction(VT, TypeWidenVector); IsLegalWiderType = true; break; } } if (IsLegalWiderType) break; } case TypeSplitVector: case TypeScalarizeVector: { MVT IntermediateVT; MVT RegisterVT; unsigned NumIntermediates; NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, RegisterVT, this); RegisterTypeForVT[i] = RegisterVT; MVT NVT = VT.getPow2VectorType(); if (NVT == VT) { // Type is already a power of 2. The default action is to split. TransformToType[i] = MVT::Other; if (PreferredAction == TypeScalarizeVector) ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); else if (PreferredAction == TypeSplitVector) ValueTypeActions.setTypeAction(VT, TypeSplitVector); else // Set type action according to the number of elements. ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector : TypeSplitVector); } else { TransformToType[i] = NVT; ValueTypeActions.setTypeAction(VT, TypeWidenVector); } break; } default: llvm_unreachable("Unknown vector legalization action!"); } } // Determine the 'representative' register class for each value type. // An representative register class is the largest (meaning one which is // not a sub-register class / subreg register class) legal register class for // a group of value types. For example, on i386, i8, i16, and i32 // representative would be GR32; while on x86_64 it's GR64. for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { const TargetRegisterClass* RRC; uint8_t Cost; std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); RepRegClassForVT[i] = RRC; RepRegClassCostForVT[i] = Cost; } } EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT VT) const { assert(!VT.isVector() && "No default SetCC type for vectors!"); return getPointerTy(DL).SimpleTy; } MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { return MVT::i32; // return the default value } /// getVectorTypeBreakdown - Vector types are broken down into some number of /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. /// /// This method returns the number of registers needed, and the VT for each /// register. It also returns the VT and quantity of the intermediate values /// before they are promoted/expanded. /// unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const { unsigned NumElts = VT.getVectorNumElements(); // If there is a wider vector type with the same element type as this one, // or a promoted vector type that has the same number of elements which // are wider, then we should convert to that legal vector type. // This handles things like <2 x float> -> <4 x float> and // <4 x i1> -> <4 x i32>. LegalizeTypeAction TA = getTypeAction(Context, VT); if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { EVT RegisterEVT = getTypeToTransformTo(Context, VT); if (isTypeLegal(RegisterEVT)) { IntermediateVT = RegisterEVT; RegisterVT = RegisterEVT.getSimpleVT(); NumIntermediates = 1; return 1; } } // Figure out the right, legal destination reg to copy into. EVT EltTy = VT.getVectorElementType(); unsigned NumVectorRegs = 1; // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we // could break down into LHS/RHS like LegalizeDAG does. if (!isPowerOf2_32(NumElts)) { NumVectorRegs = NumElts; NumElts = 1; } // Divide the input until we get to a supported size. This will always // end with a scalar if the target doesn't support vectors. while (NumElts > 1 && !isTypeLegal( EVT::getVectorVT(Context, EltTy, NumElts))) { NumElts >>= 1; NumVectorRegs <<= 1; } NumIntermediates = NumVectorRegs; EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); if (!isTypeLegal(NewVT)) NewVT = EltTy; IntermediateVT = NewVT; MVT DestVT = getRegisterType(Context, NewVT); RegisterVT = DestVT; unsigned NewVTSize = NewVT.getSizeInBits(); // Convert sizes such as i33 to i64. if (!isPowerOf2_32(NewVTSize)) NewVTSize = NextPowerOf2(NewVTSize); if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); // Otherwise, promotion or legal types use the same number of registers as // the vector decimated to the appropriate level. return NumVectorRegs; } /// Get the EVTs and ArgFlags collections that represent the legalized return /// type of the given function. This does not require a DAG or a return value, /// and is suitable for use before any DAGs for the function are constructed. /// TODO: Move this out of TargetLowering.cpp. void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr, SmallVectorImpl<ISD::OutputArg> &Outs, const TargetLowering &TLI, const DataLayout &DL) { SmallVector<EVT, 4> ValueVTs; ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) return; for (unsigned j = 0, f = NumValues; j != f; ++j) { EVT VT = ValueVTs[j]; ISD::NodeType ExtendKind = ISD::ANY_EXTEND; if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) ExtendKind = ISD::SIGN_EXTEND; else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) ExtendKind = ISD::ZERO_EXTEND; // FIXME: C calling convention requires the return type to be promoted to // at least 32-bit. But this is not necessary for non-C calling // conventions. The frontend should mark functions whose return values // require promoting with signext or zeroext attributes. if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); if (VT.bitsLT(MinVT)) VT = MinVT; } unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); // 'inreg' on function refers to return value ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg)) Flags.setInReg(); // Propagate extension type if any if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) Flags.setSExt(); else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) Flags.setZExt(); for (unsigned i = 0; i < NumParts; ++i) Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0)); } } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. This is the actual /// alignment, not its logarithm. unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, const DataLayout &DL) const { return DL.getABITypeAlignment(Ty); } bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, unsigned Alignment, bool *Fast) const { // Check if the specified alignment is sufficient based on the data layout. // TODO: While using the data layout works in practice, a better solution // would be to implement this check directly (make this a virtual function). // For example, the ABI alignment may change based on software platform while // this function should only be affected by hardware implementation. Type *Ty = VT.getTypeForEVT(Context); if (Alignment >= DL.getABITypeAlignment(Ty)) { // Assume that an access that meets the ABI-specified alignment is fast. if (Fast != nullptr) *Fast = true; return true; } // This is a misaligned access. return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast); } //===----------------------------------------------------------------------===// // TargetTransformInfo Helpers //===----------------------------------------------------------------------===// int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { enum InstructionOpcodes { #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM #include "llvm/IR/Instruction.def" }; switch (static_cast<InstructionOpcodes>(Opcode)) { case Ret: return 0; case Br: return 0; case Switch: return 0; case IndirectBr: return 0; case Invoke: return 0; case Resume: return 0; case Unreachable: return 0; case CleanupRet: return 0; case CatchRet: return 0; case CatchPad: return 0; case CatchSwitch: return 0; case CleanupPad: return 0; case Add: return ISD::ADD; case FAdd: return ISD::FADD; case Sub: return ISD::SUB; case FSub: return ISD::FSUB; case Mul: return ISD::MUL; case FMul: return ISD::FMUL; case UDiv: return ISD::UDIV; case SDiv: return ISD::SDIV; case FDiv: return ISD::FDIV; case URem: return ISD::UREM; case SRem: return ISD::SREM; case FRem: return ISD::FREM; case Shl: return ISD::SHL; case LShr: return ISD::SRL; case AShr: return ISD::SRA; case And: return ISD::AND; case Or: return ISD::OR; case Xor: return ISD::XOR; case Alloca: return 0; case Load: return ISD::LOAD; case Store: return ISD::STORE; case GetElementPtr: return 0; case Fence: return 0; case AtomicCmpXchg: return 0; case AtomicRMW: return 0; case Trunc: return ISD::TRUNCATE; case ZExt: return ISD::ZERO_EXTEND; case SExt: return ISD::SIGN_EXTEND; case FPToUI: return ISD::FP_TO_UINT; case FPToSI: return ISD::FP_TO_SINT; case UIToFP: return ISD::UINT_TO_FP; case SIToFP: return ISD::SINT_TO_FP; case FPTrunc: return ISD::FP_ROUND; case FPExt: return ISD::FP_EXTEND; case PtrToInt: return ISD::BITCAST; case IntToPtr: return ISD::BITCAST; case BitCast: return ISD::BITCAST; case AddrSpaceCast: return ISD::ADDRSPACECAST; case ICmp: return ISD::SETCC; case FCmp: return ISD::SETCC; case PHI: return 0; case Call: return 0; case Select: return ISD::SELECT; case UserOp1: return 0; case UserOp2: return 0; case VAArg: return 0; case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; case InsertElement: return ISD::INSERT_VECTOR_ELT; case ShuffleVector: return ISD::VECTOR_SHUFFLE; case ExtractValue: return ISD::MERGE_VALUES; case InsertValue: return ISD::MERGE_VALUES; case LandingPad: return 0; } llvm_unreachable("Unknown instruction type encountered!"); } std::pair<int, MVT> TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, Type *Ty) const { LLVMContext &C = Ty->getContext(); EVT MTy = getValueType(DL, Ty); int Cost = 1; // We keep legalizing the type until we find a legal kind. We assume that // the only operation that costs anything is the split. After splitting // we need to handle two types. while (true) { LegalizeKind LK = getTypeConversion(C, MTy); if (LK.first == TypeLegal) return std::make_pair(Cost, MTy.getSimpleVT()); if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) Cost *= 2; // Do not loop with f128 type. if (MTy == LK.second) return std::make_pair(Cost, MTy.getSimpleVT()); // Keep legalizing the type. MTy = LK.second; } } Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { if (!TM.getTargetTriple().isAndroid()) return nullptr; // Android provides a libc function to retrieve the address of the current // thread's unsafe stack pointer. Module *M = IRB.GetInsertBlock()->getParent()->getParent(); Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); Value *Fn = M->getOrInsertFunction("__safestack_pointer_address", StackPtrTy->getPointerTo(0), nullptr); return IRB.CreateCall(Fn); } //===----------------------------------------------------------------------===// // Loop Strength Reduction hooks //===----------------------------------------------------------------------===// /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const { // The default implementation of this implements a conservative RISCy, r+r and // r+i addr mode. // Allows a sign-extended 16-bit immediate field. if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) return false; // No global is ever allowed as a base. if (AM.BaseGV) return false; // Only support r+r, switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. return false; // Otherwise we have r+r or r+i. break; case 2: if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. return false; // Allow 2*r as r+r. break; default: // Don't allow n * r return false; } return true; }