Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Fuzzer/FuzzerLoop.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===- FuzzerLoop.cpp - Fuzzer's main loop --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Fuzzer's main loop. //===----------------------------------------------------------------------===// #include "FuzzerInternal.h" #include <algorithm> #include <cstring> #include <memory> #if defined(__has_include) #if __has_include(<sanitizer / coverage_interface.h>) #include <sanitizer/coverage_interface.h> #endif #endif extern "C" { // Re-declare some of the sanitizer functions as "weak" so that // libFuzzer can be linked w/o the sanitizers and sanitizer-coverage // (in which case it will complain at start-up time). __attribute__((weak)) void __sanitizer_print_stack_trace(); __attribute__((weak)) void __sanitizer_reset_coverage(); __attribute__((weak)) size_t __sanitizer_get_total_unique_caller_callee_pairs(); __attribute__((weak)) size_t __sanitizer_get_total_unique_coverage(); __attribute__((weak)) void __sanitizer_set_death_callback(void (*callback)(void)); __attribute__((weak)) size_t __sanitizer_get_number_of_counters(); __attribute__((weak)) uintptr_t __sanitizer_update_counter_bitset_and_clear_counters(uint8_t *bitset); __attribute__((weak)) uintptr_t __sanitizer_get_coverage_pc_buffer(uintptr_t **data); } namespace fuzzer { static const size_t kMaxUnitSizeToPrint = 256; static void MissingWeakApiFunction(const char *FnName) { Printf("ERROR: %s is not defined. Exiting.\n" "Did you use -fsanitize-coverage=... to build your code?\n", FnName); exit(1); } #define CHECK_WEAK_API_FUNCTION(fn) \ do { \ if (!fn) \ MissingWeakApiFunction(#fn); \ } while (false) // Only one Fuzzer per process. static Fuzzer *F; Fuzzer::Fuzzer(UserSuppliedFuzzer &USF, FuzzingOptions Options) : Generator(USF.GetRand().Rand()), USF(USF), Options(Options) { SetDeathCallback(); InitializeTraceState(); assert(!F); F = this; } void Fuzzer::SetDeathCallback() { CHECK_WEAK_API_FUNCTION(__sanitizer_set_death_callback); __sanitizer_set_death_callback(StaticDeathCallback); } void Fuzzer::StaticDeathCallback() { assert(F); F->DeathCallback(); } void Fuzzer::DeathCallback() { Printf("DEATH:\n"); if (CurrentUnitSize <= kMaxUnitSizeToPrint) { PrintHexArray(CurrentUnitData, CurrentUnitSize, "\n"); PrintASCII(CurrentUnitData, CurrentUnitSize, "\n"); } WriteUnitToFileWithPrefix( {CurrentUnitData, CurrentUnitData + CurrentUnitSize}, "crash-"); } void Fuzzer::StaticAlarmCallback() { assert(F); F->AlarmCallback(); } void Fuzzer::AlarmCallback() { assert(Options.UnitTimeoutSec > 0); size_t Seconds = duration_cast<seconds>(system_clock::now() - UnitStartTime).count(); if (Seconds == 0) return; if (Options.Verbosity >= 2) Printf("AlarmCallback %zd\n", Seconds); if (Seconds >= (size_t)Options.UnitTimeoutSec) { Printf("ALARM: working on the last Unit for %zd seconds\n", Seconds); Printf(" and the timeout value is %d (use -timeout=N to change)\n", Options.UnitTimeoutSec); if (CurrentUnitSize <= kMaxUnitSizeToPrint) { PrintHexArray(CurrentUnitData, CurrentUnitSize, "\n"); PrintASCII(CurrentUnitData, CurrentUnitSize, "\n"); } WriteUnitToFileWithPrefix( {CurrentUnitData, CurrentUnitData + CurrentUnitSize}, "timeout-"); Printf("==%d== ERROR: libFuzzer: timeout after %d seconds\n", GetPid(), Seconds); if (__sanitizer_print_stack_trace) __sanitizer_print_stack_trace(); Printf("SUMMARY: libFuzzer: timeout\n"); if (Options.AbortOnTimeout) abort(); exit(1); } } void Fuzzer::PrintStats(const char *Where, const char *End) { size_t Seconds = secondsSinceProcessStartUp(); size_t ExecPerSec = (Seconds ? TotalNumberOfRuns / Seconds : 0); if (Options.OutputCSV) { static bool csvHeaderPrinted = false; if (!csvHeaderPrinted) { csvHeaderPrinted = true; Printf("runs,block_cov,bits,cc_cov,corpus,execs_per_sec,tbms,reason\n"); } Printf("%zd,%zd,%zd,%zd,%zd,%zd,%zd,%s\n", TotalNumberOfRuns, LastRecordedBlockCoverage, TotalBits(), LastRecordedCallerCalleeCoverage, Corpus.size(), ExecPerSec, TotalNumberOfExecutedTraceBasedMutations, Where); } if (!Options.Verbosity) return; Printf("#%zd\t%s", TotalNumberOfRuns, Where); if (LastRecordedBlockCoverage) Printf(" cov: %zd", LastRecordedBlockCoverage); if (auto TB = TotalBits()) Printf(" bits: %zd", TB); if (LastRecordedCallerCalleeCoverage) Printf(" indir: %zd", LastRecordedCallerCalleeCoverage); Printf(" units: %zd exec/s: %zd", Corpus.size(), ExecPerSec); if (TotalNumberOfExecutedTraceBasedMutations) Printf(" tbm: %zd", TotalNumberOfExecutedTraceBasedMutations); Printf("%s", End); } void Fuzzer::RereadOutputCorpus() { if (Options.OutputCorpus.empty()) return; std::vector<Unit> AdditionalCorpus; ReadDirToVectorOfUnits(Options.OutputCorpus.c_str(), &AdditionalCorpus, &EpochOfLastReadOfOutputCorpus); if (Corpus.empty()) { Corpus = AdditionalCorpus; return; } if (!Options.Reload) return; if (Options.Verbosity >= 2) Printf("Reload: read %zd new units.\n", AdditionalCorpus.size()); for (auto &X : AdditionalCorpus) { if (X.size() > (size_t)Options.MaxLen) X.resize(Options.MaxLen); if (UnitHashesAddedToCorpus.insert(Hash(X)).second) { if (RunOne(X)) { Corpus.push_back(X); UpdateCorpusDistribution(); PrintStats("RELOAD"); } } } } void Fuzzer::ShuffleAndMinimize() { bool PreferSmall = (Options.PreferSmallDuringInitialShuffle == 1 || (Options.PreferSmallDuringInitialShuffle == -1 && USF.GetRand().RandBool())); if (Options.Verbosity) Printf("PreferSmall: %d\n", PreferSmall); PrintStats("READ "); std::vector<Unit> NewCorpus; if (Options.ShuffleAtStartUp) { std::random_shuffle(Corpus.begin(), Corpus.end(), USF.GetRand()); if (PreferSmall) std::stable_sort( Corpus.begin(), Corpus.end(), [](const Unit &A, const Unit &B) { return A.size() < B.size(); }); } Unit U; for (const auto &C : Corpus) { for (size_t First = 0; First < 1; First++) { U.clear(); size_t Last = std::min(First + Options.MaxLen, C.size()); U.insert(U.begin(), C.begin() + First, C.begin() + Last); if (Options.OnlyASCII) ToASCII(U); if (RunOne(U)) { NewCorpus.push_back(U); if (Options.Verbosity >= 2) Printf("NEW0: %zd L %zd\n", LastRecordedBlockCoverage, U.size()); } } } Corpus = NewCorpus; UpdateCorpusDistribution(); for (auto &X : Corpus) UnitHashesAddedToCorpus.insert(Hash(X)); PrintStats("INITED"); } bool Fuzzer::RunOne(const Unit &U) { UnitStartTime = system_clock::now(); TotalNumberOfRuns++; PrepareCoverageBeforeRun(); ExecuteCallback(U); bool Res = CheckCoverageAfterRun(); auto UnitStopTime = system_clock::now(); auto TimeOfUnit = duration_cast<seconds>(UnitStopTime - UnitStartTime).count(); if (!(TotalNumberOfRuns & (TotalNumberOfRuns - 1)) && secondsSinceProcessStartUp() >= 2) PrintStats("pulse "); if (TimeOfUnit > TimeOfLongestUnitInSeconds && TimeOfUnit >= Options.ReportSlowUnits) { TimeOfLongestUnitInSeconds = TimeOfUnit; Printf("Slowest unit: %zd s:\n", TimeOfLongestUnitInSeconds); WriteUnitToFileWithPrefix(U, "slow-unit-"); } return Res; } void Fuzzer::RunOneAndUpdateCorpus(Unit &U) { if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) return; if (Options.OnlyASCII) ToASCII(U); if (RunOne(U)) ReportNewCoverage(U); } void Fuzzer::ExecuteCallback(const Unit &U) { // We copy the contents of Unit into a separate heap buffer // so that we reliably find buffer overflows in it. std::unique_ptr<uint8_t[]> Data(new uint8_t[U.size()]); memcpy(Data.get(), U.data(), U.size()); AssignTaintLabels(Data.get(), U.size()); CurrentUnitData = Data.get(); CurrentUnitSize = U.size(); int Res = USF.TargetFunction(Data.get(), U.size()); (void)Res; assert(Res == 0); CurrentUnitData = nullptr; CurrentUnitSize = 0; } size_t Fuzzer::RecordBlockCoverage() { CHECK_WEAK_API_FUNCTION(__sanitizer_get_total_unique_coverage); uintptr_t PrevCoverage = LastRecordedBlockCoverage; LastRecordedBlockCoverage = __sanitizer_get_total_unique_coverage(); if (PrevCoverage == LastRecordedBlockCoverage || !Options.PrintNewCovPcs) return LastRecordedBlockCoverage; uintptr_t PrevBufferLen = LastCoveragePcBufferLen; uintptr_t *CoverageBuf; LastCoveragePcBufferLen = __sanitizer_get_coverage_pc_buffer(&CoverageBuf); assert(CoverageBuf); for (size_t i = PrevBufferLen; i < LastCoveragePcBufferLen; ++i) { Printf("%p\n", CoverageBuf[i]); } return LastRecordedBlockCoverage; } size_t Fuzzer::RecordCallerCalleeCoverage() { if (!Options.UseIndirCalls) return 0; if (!__sanitizer_get_total_unique_caller_callee_pairs) return 0; return LastRecordedCallerCalleeCoverage = __sanitizer_get_total_unique_caller_callee_pairs(); } void Fuzzer::PrepareCoverageBeforeRun() { if (Options.UseCounters) { size_t NumCounters = __sanitizer_get_number_of_counters(); CounterBitmap.resize(NumCounters); __sanitizer_update_counter_bitset_and_clear_counters(0); } RecordBlockCoverage(); RecordCallerCalleeCoverage(); } bool Fuzzer::CheckCoverageAfterRun() { size_t OldCoverage = LastRecordedBlockCoverage; size_t NewCoverage = RecordBlockCoverage(); size_t OldCallerCalleeCoverage = LastRecordedCallerCalleeCoverage; size_t NewCallerCalleeCoverage = RecordCallerCalleeCoverage(); size_t NumNewBits = 0; if (Options.UseCounters) NumNewBits = __sanitizer_update_counter_bitset_and_clear_counters( CounterBitmap.data()); return NewCoverage > OldCoverage || NewCallerCalleeCoverage > OldCallerCalleeCoverage || NumNewBits; } void Fuzzer::WriteToOutputCorpus(const Unit &U) { if (Options.OutputCorpus.empty()) return; std::string Path = DirPlusFile(Options.OutputCorpus, Hash(U)); WriteToFile(U, Path); if (Options.Verbosity >= 2) Printf("Written to %s\n", Path.c_str()); assert(!Options.OnlyASCII || IsASCII(U)); } void Fuzzer::WriteUnitToFileWithPrefix(const Unit &U, const char *Prefix) { if (!Options.SaveArtifacts) return; std::string Path = Options.ArtifactPrefix + Prefix + Hash(U); if (!Options.ExactArtifactPath.empty()) Path = Options.ExactArtifactPath; // Overrides ArtifactPrefix. WriteToFile(U, Path); Printf("artifact_prefix='%s'; Test unit written to %s\n", Options.ArtifactPrefix.c_str(), Path.c_str()); if (U.size() <= kMaxUnitSizeToPrint) Printf("Base64: %s\n", Base64(U).c_str()); } void Fuzzer::SaveCorpus() { if (Options.OutputCorpus.empty()) return; for (const auto &U : Corpus) WriteToFile(U, DirPlusFile(Options.OutputCorpus, Hash(U))); if (Options.Verbosity) Printf("Written corpus of %zd files to %s\n", Corpus.size(), Options.OutputCorpus.c_str()); } void Fuzzer::PrintStatusForNewUnit(const Unit &U) { if (!Options.PrintNEW) return; PrintStats("NEW ", ""); if (Options.Verbosity) { Printf(" L: %zd ", U.size()); USF.GetMD().PrintMutationSequence(); Printf("\n"); } } void Fuzzer::ReportNewCoverage(const Unit &U) { Corpus.push_back(U); UpdateCorpusDistribution(); UnitHashesAddedToCorpus.insert(Hash(U)); USF.GetMD().RecordSuccessfulMutationSequence(); PrintStatusForNewUnit(U); WriteToOutputCorpus(U); if (Options.ExitOnFirst) exit(0); } void Fuzzer::Merge(const std::vector<std::string> &Corpora) { if (Corpora.size() <= 1) { Printf("Merge requires two or more corpus dirs\n"); return; } auto InitialCorpusDir = Corpora[0]; ReadDir(InitialCorpusDir, nullptr); Printf("Merge: running the initial corpus '%s' of %d units\n", InitialCorpusDir.c_str(), Corpus.size()); for (auto &U : Corpus) RunOne(U); std::vector<std::string> ExtraCorpora(Corpora.begin() + 1, Corpora.end()); size_t NumTried = 0; size_t NumMerged = 0; for (auto &C : ExtraCorpora) { Corpus.clear(); ReadDir(C, nullptr); Printf("Merge: merging the extra corpus '%s' of %zd units\n", C.c_str(), Corpus.size()); for (auto &U : Corpus) { NumTried++; if (RunOne(U)) { WriteToOutputCorpus(U); NumMerged++; } } } Printf("Merge: written %zd out of %zd units\n", NumMerged, NumTried); } void Fuzzer::MutateAndTestOne() { USF.GetMD().StartMutationSequence(); auto U = ChooseUnitToMutate(); for (int i = 0; i < Options.MutateDepth; i++) { size_t Size = U.size(); U.resize(Options.MaxLen); size_t NewSize = USF.Mutate(U.data(), Size, U.size()); assert(NewSize > 0 && "Mutator returned empty unit"); assert(NewSize <= (size_t)Options.MaxLen && "Mutator return overisized unit"); U.resize(NewSize); if (i == 0) StartTraceRecording(); RunOneAndUpdateCorpus(U); StopTraceRecording(); } } // Returns an index of random unit from the corpus to mutate. // Hypothesis: units added to the corpus last are more likely to be interesting. // This function gives more weight to the more recent units. size_t Fuzzer::ChooseUnitIdxToMutate() { size_t Idx = static_cast<size_t>(CorpusDistribution(Generator)); assert(Idx < Corpus.size()); return Idx; } // Experimental search heuristic: drilling. // - Read, shuffle, execute and minimize the corpus. // - Choose one random unit. // - Reset the coverage. // - Start fuzzing as if the chosen unit was the only element of the corpus. // - When done, reset the coverage again. // - Merge the newly created corpus into the original one. void Fuzzer::Drill() { // The corpus is already read, shuffled, and minimized. assert(!Corpus.empty()); Options.PrintNEW = false; // Don't print NEW status lines when drilling. Unit U = ChooseUnitToMutate(); CHECK_WEAK_API_FUNCTION(__sanitizer_reset_coverage); __sanitizer_reset_coverage(); std::vector<Unit> SavedCorpus; SavedCorpus.swap(Corpus); Corpus.push_back(U); UpdateCorpusDistribution(); assert(Corpus.size() == 1); RunOne(U); PrintStats("DRILL "); std::string SavedOutputCorpusPath; // Don't write new units while drilling. SavedOutputCorpusPath.swap(Options.OutputCorpus); Loop(); __sanitizer_reset_coverage(); PrintStats("REINIT"); SavedOutputCorpusPath.swap(Options.OutputCorpus); for (auto &U : SavedCorpus) RunOne(U); PrintStats("MERGE "); Options.PrintNEW = true; size_t NumMerged = 0; for (auto &U : Corpus) { if (RunOne(U)) { PrintStatusForNewUnit(U); NumMerged++; WriteToOutputCorpus(U); } } PrintStats("MERGED"); if (NumMerged && Options.Verbosity) Printf("Drilling discovered %zd new units\n", NumMerged); } void Fuzzer::Loop() { system_clock::time_point LastCorpusReload = system_clock::now(); if (Options.DoCrossOver) USF.GetMD().SetCorpus(&Corpus); while (true) { SyncCorpus(); auto Now = system_clock::now(); if (duration_cast<seconds>(Now - LastCorpusReload).count()) { RereadOutputCorpus(); LastCorpusReload = Now; } if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) break; if (Options.MaxTotalTimeSec > 0 && secondsSinceProcessStartUp() > static_cast<size_t>(Options.MaxTotalTimeSec)) break; // Perform several mutations and runs. MutateAndTestOne(); } PrintStats("DONE ", "\n"); USF.GetMD().PrintRecommendedDictionary(); } void Fuzzer::SyncCorpus() { if (Options.SyncCommand.empty() || Options.OutputCorpus.empty()) return; auto Now = system_clock::now(); if (duration_cast<seconds>(Now - LastExternalSync).count() < Options.SyncTimeout) return; LastExternalSync = Now; ExecuteCommand(Options.SyncCommand + " " + Options.OutputCorpus); } void Fuzzer::UpdateCorpusDistribution() { size_t N = Corpus.size(); std::vector<double> Intervals(N + 1); std::vector<double> Weights(N); std::iota(Intervals.begin(), Intervals.end(), 0); std::iota(Weights.begin(), Weights.end(), 1); CorpusDistribution = std::piecewise_constant_distribution<double>( Intervals.begin(), Intervals.end(), Weights.begin()); } } // namespace fuzzer