Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Fuzzer/FuzzerMutate.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===- FuzzerMutate.cpp - Mutate a test input -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Mutate a test input. //===----------------------------------------------------------------------===// #include <cstring> #include "FuzzerInternal.h" #include <algorithm> namespace fuzzer { struct Mutator { size_t (MutationDispatcher::*Fn)(uint8_t *Data, size_t Size, size_t Max); const char *Name; }; class DictionaryEntry { public: DictionaryEntry() {} DictionaryEntry(Word W) : W(W) {} DictionaryEntry(Word W, size_t PositionHint) : W(W), PositionHint(PositionHint) {} const Word &GetW() const { return W; } bool HasPositionHint() const { return PositionHint != std::numeric_limits<size_t>::max(); } size_t GetPositionHint() const { assert(HasPositionHint()); return PositionHint; } void IncUseCount() { UseCount++; } void IncSuccessCount() { SuccessCount++; } size_t GetUseCount() const { return UseCount; } size_t GetSuccessCount() const {return SuccessCount; } private: Word W; size_t PositionHint = std::numeric_limits<size_t>::max(); size_t UseCount = 0; size_t SuccessCount = 0; }; class Dictionary { public: static const size_t kMaxDictSize = 1 << 14; bool ContainsWord(const Word &W) const { return std::any_of(begin(), end(), [&](const DictionaryEntry &DE) { return DE.GetW() == W; }); } const DictionaryEntry *begin() const { return &DE[0]; } const DictionaryEntry *end() const { return begin() + Size; } DictionaryEntry & operator[] (size_t Idx) { assert(Idx < Size); return DE[Idx]; } void push_back(DictionaryEntry DE) { if (Size < kMaxDictSize) this->DE[Size++] = DE; } void clear() { Size = 0; } bool empty() const { return Size == 0; } size_t size() const { return Size; } private: DictionaryEntry DE[kMaxDictSize]; size_t Size = 0; }; const size_t Dictionary::kMaxDictSize; struct MutationDispatcher::Impl { // Dictionary provided by the user via -dict=DICT_FILE. Dictionary ManualDictionary; // Temporary dictionary modified by the fuzzer itself, // recreated periodically. Dictionary TempAutoDictionary; // Persistent dictionary modified by the fuzzer, consists of // entries that led to successfull discoveries in the past mutations. Dictionary PersistentAutoDictionary; std::vector<Mutator> Mutators; std::vector<Mutator> CurrentMutatorSequence; std::vector<DictionaryEntry *> CurrentDictionaryEntrySequence; const std::vector<Unit> *Corpus = nullptr; FuzzerRandomBase &Rand; void Add(Mutator M) { Mutators.push_back(M); } Impl(FuzzerRandomBase &Rand) : Rand(Rand) { Add({&MutationDispatcher::Mutate_EraseByte, "EraseByte"}); Add({&MutationDispatcher::Mutate_InsertByte, "InsertByte"}); Add({&MutationDispatcher::Mutate_ChangeByte, "ChangeByte"}); Add({&MutationDispatcher::Mutate_ChangeBit, "ChangeBit"}); Add({&MutationDispatcher::Mutate_ShuffleBytes, "ShuffleBytes"}); Add({&MutationDispatcher::Mutate_ChangeASCIIInteger, "ChangeASCIIInt"}); Add({&MutationDispatcher::Mutate_CrossOver, "CrossOver"}); Add({&MutationDispatcher::Mutate_AddWordFromManualDictionary, "AddFromManualDict"}); Add({&MutationDispatcher::Mutate_AddWordFromTemporaryAutoDictionary, "AddFromTempAutoDict"}); Add({&MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary, "AddFromPersAutoDict"}); } void SetCorpus(const std::vector<Unit> *Corpus) { this->Corpus = Corpus; } size_t AddWordFromDictionary(Dictionary &D, uint8_t *Data, size_t Size, size_t MaxSize); }; static char FlipRandomBit(char X, FuzzerRandomBase &Rand) { int Bit = Rand(8); char Mask = 1 << Bit; char R; if (X & (1 << Bit)) R = X & ~Mask; else R = X | Mask; assert(R != X); return R; } static char RandCh(FuzzerRandomBase &Rand) { if (Rand.RandBool()) return Rand(256); const char *Special = "!*'();:@&=+$,/?%#[]123ABCxyz-`~."; return Special[Rand(sizeof(Special) - 1)]; } size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size, size_t MaxSize) { assert(Size); size_t ShuffleAmount = Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size. size_t ShuffleStart = Rand(Size - ShuffleAmount); assert(ShuffleStart + ShuffleAmount <= Size); std::random_shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount, Rand); return Size; } size_t MutationDispatcher::Mutate_EraseByte(uint8_t *Data, size_t Size, size_t MaxSize) { assert(Size); if (Size == 1) return 0; size_t Idx = Rand(Size); // Erase Data[Idx]. memmove(Data + Idx, Data + Idx + 1, Size - Idx - 1); return Size - 1; } size_t MutationDispatcher::Mutate_InsertByte(uint8_t *Data, size_t Size, size_t MaxSize) { if (Size == MaxSize) return 0; size_t Idx = Rand(Size + 1); // Insert new value at Data[Idx]. memmove(Data + Idx + 1, Data + Idx, Size - Idx); Data[Idx] = RandCh(Rand); return Size + 1; } size_t MutationDispatcher::Mutate_ChangeByte(uint8_t *Data, size_t Size, size_t MaxSize) { size_t Idx = Rand(Size); Data[Idx] = RandCh(Rand); return Size; } size_t MutationDispatcher::Mutate_ChangeBit(uint8_t *Data, size_t Size, size_t MaxSize) { size_t Idx = Rand(Size); Data[Idx] = FlipRandomBit(Data[Idx], Rand); return Size; } size_t MutationDispatcher::Mutate_AddWordFromManualDictionary(uint8_t *Data, size_t Size, size_t MaxSize) { return MDImpl->AddWordFromDictionary(MDImpl->ManualDictionary, Data, Size, MaxSize); } size_t MutationDispatcher::Mutate_AddWordFromTemporaryAutoDictionary( uint8_t *Data, size_t Size, size_t MaxSize) { return MDImpl->AddWordFromDictionary(MDImpl->TempAutoDictionary, Data, Size, MaxSize); } size_t MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary( uint8_t *Data, size_t Size, size_t MaxSize) { return MDImpl->AddWordFromDictionary(MDImpl->PersistentAutoDictionary, Data, Size, MaxSize); } size_t MutationDispatcher::Impl::AddWordFromDictionary(Dictionary &D, uint8_t *Data, size_t Size, size_t MaxSize) { if (D.empty()) return 0; DictionaryEntry &DE = D[Rand(D.size())]; const Word &W = DE.GetW(); bool UsePositionHint = DE.HasPositionHint() && DE.GetPositionHint() + W.size() < Size && Rand.RandBool(); if (Rand.RandBool()) { // Insert W. if (Size + W.size() > MaxSize) return 0; size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1); memmove(Data + Idx + W.size(), Data + Idx, Size - Idx); memcpy(Data + Idx, W.data(), W.size()); Size += W.size(); } else { // Overwrite some bytes with W. if (W.size() > Size) return 0; size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size - W.size()); memcpy(Data + Idx, W.data(), W.size()); } DE.IncUseCount(); CurrentDictionaryEntrySequence.push_back(&DE); return Size; } size_t MutationDispatcher::Mutate_ChangeASCIIInteger(uint8_t *Data, size_t Size, size_t MaxSize) { size_t B = Rand(Size); while (B < Size && !isdigit(Data[B])) B++; if (B == Size) return 0; size_t E = B; while (E < Size && isdigit(Data[E])) E++; assert(B < E); // now we have digits in [B, E). // strtol and friends don't accept non-zero-teminated data, parse it manually. uint64_t Val = Data[B] - '0'; for (size_t i = B + 1; i < E; i++) Val = Val * 10 + Data[i] - '0'; // Mutate the integer value. switch(Rand(5)) { case 0: Val++; break; case 1: Val--; break; case 2: Val /= 2; break; case 3: Val *= 2; break; case 4: Val = Rand(Val * Val); break; default: assert(0); } // Just replace the bytes with the new ones, don't bother moving bytes. for (size_t i = B; i < E; i++) { size_t Idx = E + B - i - 1; assert(Idx >= B && Idx < E); Data[Idx] = (Val % 10) + '0'; Val /= 10; } return Size; } size_t MutationDispatcher::Mutate_CrossOver(uint8_t *Data, size_t Size, size_t MaxSize) { auto Corpus = MDImpl->Corpus; if (!Corpus || Corpus->size() < 2 || Size == 0) return 0; size_t Idx = Rand(Corpus->size()); const Unit &Other = (*Corpus)[Idx]; if (Other.empty()) return 0; Unit U(MaxSize); size_t NewSize = CrossOver(Data, Size, Other.data(), Other.size(), U.data(), U.size()); assert(NewSize > 0 && "CrossOver returned empty unit"); assert(NewSize <= MaxSize && "CrossOver returned overisized unit"); memcpy(Data, U.data(), NewSize); return NewSize; } void MutationDispatcher::StartMutationSequence() { MDImpl->CurrentMutatorSequence.clear(); MDImpl->CurrentDictionaryEntrySequence.clear(); } // Copy successful dictionary entries to PersistentAutoDictionary. void MutationDispatcher::RecordSuccessfulMutationSequence() { for (auto DE : MDImpl->CurrentDictionaryEntrySequence) { // MDImpl->PersistentAutoDictionary.AddWithSuccessCountOne(DE); DE->IncSuccessCount(); // Linear search is fine here as this happens seldom. if (!MDImpl->PersistentAutoDictionary.ContainsWord(DE->GetW())) MDImpl->PersistentAutoDictionary.push_back({DE->GetW(), 1}); } } void MutationDispatcher::PrintRecommendedDictionary() { std::vector<DictionaryEntry> V; for (auto &DE : MDImpl->PersistentAutoDictionary) if (!MDImpl->ManualDictionary.ContainsWord(DE.GetW())) V.push_back(DE); if (V.empty()) return; Printf("###### Recommended dictionary. ######\n"); for (auto &DE: V) { Printf("\""); PrintASCII(DE.GetW(), "\""); Printf(" # Uses: %zd\n", DE.GetUseCount()); } Printf("###### End of recommended dictionary. ######\n"); } void MutationDispatcher::PrintMutationSequence() { Printf("MS: %zd ", MDImpl->CurrentMutatorSequence.size()); for (auto M : MDImpl->CurrentMutatorSequence) Printf("%s-", M.Name); if (!MDImpl->CurrentDictionaryEntrySequence.empty()) { Printf(" DE: "); for (auto DE : MDImpl->CurrentDictionaryEntrySequence) { Printf("\""); PrintASCII(DE->GetW(), "\"-"); } } } // Mutates Data in place, returns new size. size_t MutationDispatcher::Mutate(uint8_t *Data, size_t Size, size_t MaxSize) { assert(MaxSize > 0); assert(Size <= MaxSize); if (Size == 0) { for (size_t i = 0; i < MaxSize; i++) Data[i] = RandCh(Rand); return MaxSize; } assert(Size > 0); // Some mutations may fail (e.g. can't insert more bytes if Size == MaxSize), // in which case they will return 0. // Try several times before returning un-mutated data. for (int Iter = 0; Iter < 10; Iter++) { size_t MutatorIdx = Rand(MDImpl->Mutators.size()); auto M = MDImpl->Mutators[MutatorIdx]; size_t NewSize = (this->*(M.Fn))(Data, Size, MaxSize); if (NewSize) { MDImpl->CurrentMutatorSequence.push_back(M); return NewSize; } } return Size; } void MutationDispatcher::SetCorpus(const std::vector<Unit> *Corpus) { MDImpl->SetCorpus(Corpus); } void MutationDispatcher::AddWordToManualDictionary(const Word &W) { MDImpl->ManualDictionary.push_back( {W, std::numeric_limits<size_t>::max()}); } void MutationDispatcher::AddWordToAutoDictionary(const Word &W, size_t PositionHint) { static const size_t kMaxAutoDictSize = 1 << 14; if (MDImpl->TempAutoDictionary.size() >= kMaxAutoDictSize) return; MDImpl->TempAutoDictionary.push_back({W, PositionHint}); } void MutationDispatcher::ClearAutoDictionary() { MDImpl->TempAutoDictionary.clear(); } MutationDispatcher::MutationDispatcher(FuzzerRandomBase &Rand) : Rand(Rand) { MDImpl = new Impl(Rand); } MutationDispatcher::~MutationDispatcher() { delete MDImpl; } } // namespace fuzzer