Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/IR/BasicBlock.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | afa8332a0e37 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the BasicBlock class for the IR library. // //===----------------------------------------------------------------------===// #include "llvm/IR/BasicBlock.h" #include "SymbolTableListTraitsImpl.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Type.h" #include <algorithm> using namespace llvm; ValueSymbolTable *BasicBlock::getValueSymbolTable() { if (Function *F = getParent()) return &F->getValueSymbolTable(); return nullptr; } LLVMContext &BasicBlock::getContext() const { return getType()->getContext(); } // Explicit instantiation of SymbolTableListTraits since some of the methods // are not in the public header file... template class llvm::SymbolTableListTraits<Instruction>; BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, BasicBlock *InsertBefore) : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { if (NewParent) insertInto(NewParent, InsertBefore); else assert(!InsertBefore && "Cannot insert block before another block with no function!"); setName(Name); } void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { assert(NewParent && "Expected a parent"); assert(!Parent && "Already has a parent"); if (InsertBefore) NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this); else NewParent->getBasicBlockList().push_back(this); } BasicBlock::~BasicBlock() { // If the address of the block is taken and it is being deleted (e.g. because // it is dead), this means that there is either a dangling constant expr // hanging off the block, or an undefined use of the block (source code // expecting the address of a label to keep the block alive even though there // is no indirect branch). Handle these cases by zapping the BlockAddress // nodes. There are no other possible uses at this point. if (hasAddressTaken()) { assert(!use_empty() && "There should be at least one blockaddress!"); Constant *Replacement = ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); while (!use_empty()) { BlockAddress *BA = cast<BlockAddress>(user_back()); BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, BA->getType())); BA->destroyConstant(); } } assert(getParent() == nullptr && "BasicBlock still linked into the program!"); dropAllReferences(); InstList.clear(); } void BasicBlock::setParent(Function *parent) { // Set Parent=parent, updating instruction symtab entries as appropriate. InstList.setSymTabObject(&Parent, parent); } void BasicBlock::removeFromParent() { getParent()->getBasicBlockList().remove(getIterator()); } iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() { return getParent()->getBasicBlockList().erase(getIterator()); } /// Unlink this basic block from its current function and /// insert it into the function that MovePos lives in, right before MovePos. void BasicBlock::moveBefore(BasicBlock *MovePos) { MovePos->getParent()->getBasicBlockList().splice( MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator()); } /// Unlink this basic block from its current function and /// insert it into the function that MovePos lives in, right after MovePos. void BasicBlock::moveAfter(BasicBlock *MovePos) { MovePos->getParent()->getBasicBlockList().splice( ++MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator()); } const Module *BasicBlock::getModule() const { return getParent()->getParent(); } Module *BasicBlock::getModule() { return getParent()->getParent(); } TerminatorInst *BasicBlock::getTerminator() { if (InstList.empty()) return nullptr; return dyn_cast<TerminatorInst>(&InstList.back()); } const TerminatorInst *BasicBlock::getTerminator() const { if (InstList.empty()) return nullptr; return dyn_cast<TerminatorInst>(&InstList.back()); } CallInst *BasicBlock::getTerminatingMustTailCall() { if (InstList.empty()) return nullptr; ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); if (!RI || RI == &InstList.front()) return nullptr; Instruction *Prev = RI->getPrevNode(); if (!Prev) return nullptr; if (Value *RV = RI->getReturnValue()) { if (RV != Prev) return nullptr; // Look through the optional bitcast. if (auto *BI = dyn_cast<BitCastInst>(Prev)) { RV = BI->getOperand(0); Prev = BI->getPrevNode(); if (!Prev || RV != Prev) return nullptr; } } if (auto *CI = dyn_cast<CallInst>(Prev)) { if (CI->isMustTailCall()) return CI; } return nullptr; } Instruction* BasicBlock::getFirstNonPHI() { for (Instruction &I : *this) if (!isa<PHINode>(I)) return &I; return nullptr; } Instruction* BasicBlock::getFirstNonPHIOrDbg() { for (Instruction &I : *this) if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I)) return &I; return nullptr; } Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() { for (Instruction &I : *this) { if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I)) continue; if (auto *II = dyn_cast<IntrinsicInst>(&I)) if (II->getIntrinsicID() == Intrinsic::lifetime_start || II->getIntrinsicID() == Intrinsic::lifetime_end) continue; return &I; } return nullptr; } BasicBlock::iterator BasicBlock::getFirstInsertionPt() { Instruction *FirstNonPHI = getFirstNonPHI(); if (!FirstNonPHI) return end(); iterator InsertPt = FirstNonPHI->getIterator(); if (InsertPt->isEHPad()) ++InsertPt; return InsertPt; } void BasicBlock::dropAllReferences() { for(iterator I = begin(), E = end(); I != E; ++I) I->dropAllReferences(); } /// If this basic block has a single predecessor block, /// return the block, otherwise return a null pointer. BasicBlock *BasicBlock::getSinglePredecessor() { pred_iterator PI = pred_begin(this), E = pred_end(this); if (PI == E) return nullptr; // No preds. BasicBlock *ThePred = *PI; ++PI; return (PI == E) ? ThePred : nullptr /*multiple preds*/; } /// If this basic block has a unique predecessor block, /// return the block, otherwise return a null pointer. /// Note that unique predecessor doesn't mean single edge, there can be /// multiple edges from the unique predecessor to this block (for example /// a switch statement with multiple cases having the same destination). BasicBlock *BasicBlock::getUniquePredecessor() { pred_iterator PI = pred_begin(this), E = pred_end(this); if (PI == E) return nullptr; // No preds. BasicBlock *PredBB = *PI; ++PI; for (;PI != E; ++PI) { if (*PI != PredBB) return nullptr; // The same predecessor appears multiple times in the predecessor list. // This is OK. } return PredBB; } BasicBlock *BasicBlock::getSingleSuccessor() { succ_iterator SI = succ_begin(this), E = succ_end(this); if (SI == E) return nullptr; // no successors BasicBlock *TheSucc = *SI; ++SI; return (SI == E) ? TheSucc : nullptr /* multiple successors */; } BasicBlock *BasicBlock::getUniqueSuccessor() { succ_iterator SI = succ_begin(this), E = succ_end(this); if (SI == E) return nullptr; // No successors BasicBlock *SuccBB = *SI; ++SI; for (;SI != E; ++SI) { if (*SI != SuccBB) return nullptr; // The same successor appears multiple times in the successor list. // This is OK. } return SuccBB; } /// This method is used to notify a BasicBlock that the /// specified Predecessor of the block is no longer able to reach it. This is /// actually not used to update the Predecessor list, but is actually used to /// update the PHI nodes that reside in the block. Note that this should be /// called while the predecessor still refers to this block. /// void BasicBlock::removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs) { assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && "removePredecessor: BB is not a predecessor!"); if (InstList.empty()) return; PHINode *APN = dyn_cast<PHINode>(&front()); if (!APN) return; // Quick exit. // If there are exactly two predecessors, then we want to nuke the PHI nodes // altogether. However, we cannot do this, if this in this case: // // Loop: // %x = phi [X, Loop] // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1 // br Loop ;; %x2 does not dominate all uses // // This is because the PHI node input is actually taken from the predecessor // basic block. The only case this can happen is with a self loop, so we // check for this case explicitly now. // unsigned max_idx = APN->getNumIncomingValues(); assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); if (max_idx == 2) { BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); // Disable PHI elimination! if (this == Other) max_idx = 3; } // <= Two predecessors BEFORE I remove one? if (max_idx <= 2 && !DontDeleteUselessPHIs) { // Yup, loop through and nuke the PHI nodes while (PHINode *PN = dyn_cast<PHINode>(&front())) { // Remove the predecessor first. PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); // If the PHI _HAD_ two uses, replace PHI node with its now *single* value if (max_idx == 2) { if (PN->getIncomingValue(0) != PN) PN->replaceAllUsesWith(PN->getIncomingValue(0)); else // We are left with an infinite loop with no entries: kill the PHI. PN->replaceAllUsesWith(UndefValue::get(PN->getType())); getInstList().pop_front(); // Remove the PHI node } // If the PHI node already only had one entry, it got deleted by // removeIncomingValue. } } else { // Okay, now we know that we need to remove predecessor #pred_idx from all // PHI nodes. Iterate over each PHI node fixing them up PHINode *PN; for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { ++II; PN->removeIncomingValue(Pred, false); // If all incoming values to the Phi are the same, we can replace the Phi // with that value. Value* PNV = nullptr; if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) if (PNV != PN) { PN->replaceAllUsesWith(PNV); PN->eraseFromParent(); } } } } bool BasicBlock::canSplitPredecessors() const { const Instruction *FirstNonPHI = getFirstNonPHI(); if (isa<LandingPadInst>(FirstNonPHI)) return true; // This is perhaps a little conservative because constructs like // CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors // cannot handle such things just yet. if (FirstNonPHI->isEHPad()) return false; return true; } /// This splits a basic block into two at the specified /// instruction. Note that all instructions BEFORE the specified iterator stay /// as part of the original basic block, an unconditional branch is added to /// the new BB, and the rest of the instructions in the BB are moved to the new /// BB, including the old terminator. This invalidates the iterator. /// /// Note that this only works on well formed basic blocks (must have a /// terminator), and 'I' must not be the end of instruction list (which would /// cause a degenerate basic block to be formed, having a terminator inside of /// the basic block). /// BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); assert(I != InstList.end() && "Trying to get me to create degenerate basic block!"); BasicBlock *InsertBefore = std::next(Function::iterator(this)) .getNodePtrUnchecked(); BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(), InsertBefore); // Save DebugLoc of split point before invalidating iterator. DebugLoc Loc = I->getDebugLoc(); // Move all of the specified instructions from the original basic block into // the new basic block. New->getInstList().splice(New->end(), this->getInstList(), I, end()); // Add a branch instruction to the newly formed basic block. BranchInst *BI = BranchInst::Create(New, this); BI->setDebugLoc(Loc); // Now we must loop through all of the successors of the New block (which // _were_ the successors of the 'this' block), and update any PHI nodes in // successors. If there were PHI nodes in the successors, then they need to // know that incoming branches will be from New, not from Old. // for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { // Loop over any phi nodes in the basic block, updating the BB field of // incoming values... BasicBlock *Successor = *I; PHINode *PN; for (BasicBlock::iterator II = Successor->begin(); (PN = dyn_cast<PHINode>(II)); ++II) { int IDX = PN->getBasicBlockIndex(this); while (IDX != -1) { PN->setIncomingBlock((unsigned)IDX, New); IDX = PN->getBasicBlockIndex(this); } } } return New; } void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { TerminatorInst *TI = getTerminator(); if (!TI) // Cope with being called on a BasicBlock that doesn't have a terminator // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. return; for (BasicBlock *Succ : TI->successors()) { // N.B. Succ might not be a complete BasicBlock, so don't assume // that it ends with a non-phi instruction. for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) { PHINode *PN = dyn_cast<PHINode>(II); if (!PN) break; int i; while ((i = PN->getBasicBlockIndex(this)) >= 0) PN->setIncomingBlock(i, New); } } } /// Return true if this basic block is a landing pad. I.e., it's /// the destination of the 'unwind' edge of an invoke instruction. bool BasicBlock::isLandingPad() const { return isa<LandingPadInst>(getFirstNonPHI()); } /// Return the landingpad instruction associated with the landing pad. LandingPadInst *BasicBlock::getLandingPadInst() { return dyn_cast<LandingPadInst>(getFirstNonPHI()); } const LandingPadInst *BasicBlock::getLandingPadInst() const { return dyn_cast<LandingPadInst>(getFirstNonPHI()); }