Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/IR/IRBuilder.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | afa8332a0e37 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===---- IRBuilder.cpp - Builder for LLVM Instrs -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the IRBuilder class, which is used as a convenient way // to create LLVM instructions with a consistent and simplified interface. // //===----------------------------------------------------------------------===// #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Statepoint.h" using namespace llvm; /// CreateGlobalString - Make a new global variable with an initializer that /// has array of i8 type filled in with the nul terminated string value /// specified. If Name is specified, it is the name of the global variable /// created. GlobalVariable *IRBuilderBase::CreateGlobalString(StringRef Str, const Twine &Name, unsigned AddressSpace) { Constant *StrConstant = ConstantDataArray::getString(Context, Str); Module &M = *BB->getParent()->getParent(); GlobalVariable *GV = new GlobalVariable(M, StrConstant->getType(), true, GlobalValue::PrivateLinkage, StrConstant, Name, nullptr, GlobalVariable::NotThreadLocal, AddressSpace); GV->setUnnamedAddr(true); return GV; } Type *IRBuilderBase::getCurrentFunctionReturnType() const { assert(BB && BB->getParent() && "No current function!"); return BB->getParent()->getReturnType(); } Value *IRBuilderBase::getCastedInt8PtrValue(Value *Ptr) { PointerType *PT = cast<PointerType>(Ptr->getType()); if (PT->getElementType()->isIntegerTy(8)) return Ptr; // Otherwise, we need to insert a bitcast. PT = getInt8PtrTy(PT->getAddressSpace()); BitCastInst *BCI = new BitCastInst(Ptr, PT, ""); BB->getInstList().insert(InsertPt, BCI); SetInstDebugLocation(BCI); return BCI; } static CallInst *createCallHelper(Value *Callee, ArrayRef<Value *> Ops, IRBuilderBase *Builder, const Twine& Name="") { CallInst *CI = CallInst::Create(Callee, Ops, Name); Builder->GetInsertBlock()->getInstList().insert(Builder->GetInsertPoint(),CI); Builder->SetInstDebugLocation(CI); return CI; } static InvokeInst *createInvokeHelper(Value *Invokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Value *> Ops, IRBuilderBase *Builder, const Twine &Name = "") { InvokeInst *II = InvokeInst::Create(Invokee, NormalDest, UnwindDest, Ops, Name); Builder->GetInsertBlock()->getInstList().insert(Builder->GetInsertPoint(), II); Builder->SetInstDebugLocation(II); return II; } CallInst *IRBuilderBase:: CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align, bool isVolatile, MDNode *TBAATag, MDNode *ScopeTag, MDNode *NoAliasTag) { Ptr = getCastedInt8PtrValue(Ptr); Value *Ops[] = { Ptr, Val, Size, getInt32(Align), getInt1(isVolatile) }; Type *Tys[] = { Ptr->getType(), Size->getType() }; Module *M = BB->getParent()->getParent(); Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys); CallInst *CI = createCallHelper(TheFn, Ops, this); // Set the TBAA info if present. if (TBAATag) CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); if (ScopeTag) CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); if (NoAliasTag) CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); return CI; } CallInst *IRBuilderBase:: CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned Align, bool isVolatile, MDNode *TBAATag, MDNode *TBAAStructTag, MDNode *ScopeTag, MDNode *NoAliasTag) { Dst = getCastedInt8PtrValue(Dst); Src = getCastedInt8PtrValue(Src); Value *Ops[] = { Dst, Src, Size, getInt32(Align), getInt1(isVolatile) }; Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() }; Module *M = BB->getParent()->getParent(); Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys); CallInst *CI = createCallHelper(TheFn, Ops, this); // Set the TBAA info if present. if (TBAATag) CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); // Set the TBAA Struct info if present. if (TBAAStructTag) CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag); if (ScopeTag) CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); if (NoAliasTag) CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); return CI; } CallInst *IRBuilderBase:: CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned Align, bool isVolatile, MDNode *TBAATag, MDNode *ScopeTag, MDNode *NoAliasTag) { Dst = getCastedInt8PtrValue(Dst); Src = getCastedInt8PtrValue(Src); Value *Ops[] = { Dst, Src, Size, getInt32(Align), getInt1(isVolatile) }; Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() }; Module *M = BB->getParent()->getParent(); Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memmove, Tys); CallInst *CI = createCallHelper(TheFn, Ops, this); // Set the TBAA info if present. if (TBAATag) CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); if (ScopeTag) CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); if (NoAliasTag) CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); return CI; } CallInst *IRBuilderBase::CreateLifetimeStart(Value *Ptr, ConstantInt *Size) { assert(isa<PointerType>(Ptr->getType()) && "lifetime.start only applies to pointers."); Ptr = getCastedInt8PtrValue(Ptr); if (!Size) Size = getInt64(-1); else assert(Size->getType() == getInt64Ty() && "lifetime.start requires the size to be an i64"); Value *Ops[] = { Size, Ptr }; Module *M = BB->getParent()->getParent(); Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::lifetime_start); return createCallHelper(TheFn, Ops, this); } CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) { assert(isa<PointerType>(Ptr->getType()) && "lifetime.end only applies to pointers."); Ptr = getCastedInt8PtrValue(Ptr); if (!Size) Size = getInt64(-1); else assert(Size->getType() == getInt64Ty() && "lifetime.end requires the size to be an i64"); Value *Ops[] = { Size, Ptr }; Module *M = BB->getParent()->getParent(); Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::lifetime_end); return createCallHelper(TheFn, Ops, this); } CallInst *IRBuilderBase::CreateAssumption(Value *Cond) { assert(Cond->getType() == getInt1Ty() && "an assumption condition must be of type i1"); Value *Ops[] = { Cond }; Module *M = BB->getParent()->getParent(); Value *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume); return createCallHelper(FnAssume, Ops, this); } /// Create a call to a Masked Load intrinsic. /// Ptr - the base pointer for the load /// Align - alignment of the source location /// Mask - an vector of booleans which indicates what vector lanes should /// be accessed in memory /// PassThru - a pass-through value that is used to fill the masked-off lanes /// of the result /// Name - name of the result variable CallInst *IRBuilderBase::CreateMaskedLoad(Value *Ptr, unsigned Align, Value *Mask, Value *PassThru, const Twine &Name) { assert(Ptr->getType()->isPointerTy() && "Ptr must be of pointer type"); // DataTy is the overloaded type Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); assert(DataTy->isVectorTy() && "Ptr should point to a vector"); if (!PassThru) PassThru = UndefValue::get(DataTy); Value *Ops[] = { Ptr, getInt32(Align), Mask, PassThru}; return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops, DataTy, Name); } /// Create a call to a Masked Store intrinsic. /// Val - the data to be stored, /// Ptr - the base pointer for the store /// Align - alignment of the destination location /// Mask - an vector of booleans which indicates what vector lanes should /// be accessed in memory CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr, unsigned Align, Value *Mask) { Value *Ops[] = { Val, Ptr, getInt32(Align), Mask }; // Type of the data to be stored - the only one overloaded type return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, Val->getType()); } /// Create a call to a Masked intrinsic, with given intrinsic Id, /// an array of operands - Ops, and one overloaded type - DataTy CallInst *IRBuilderBase::CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops, Type *DataTy, const Twine &Name) { Module *M = BB->getParent()->getParent(); Type *OverloadedTypes[] = { DataTy }; Value *TheFn = Intrinsic::getDeclaration(M, Id, OverloadedTypes); return createCallHelper(TheFn, Ops, this, Name); } template <typename T0, typename T1, typename T2, typename T3> static std::vector<Value *> getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs, ArrayRef<T1> TransitionArgs, ArrayRef<T2> DeoptArgs, ArrayRef<T3> GCArgs) { std::vector<Value *> Args; Args.push_back(B.getInt64(ID)); Args.push_back(B.getInt32(NumPatchBytes)); Args.push_back(ActualCallee); Args.push_back(B.getInt32(CallArgs.size())); Args.push_back(B.getInt32(Flags)); Args.insert(Args.end(), CallArgs.begin(), CallArgs.end()); Args.push_back(B.getInt32(TransitionArgs.size())); Args.insert(Args.end(), TransitionArgs.begin(), TransitionArgs.end()); Args.push_back(B.getInt32(DeoptArgs.size())); Args.insert(Args.end(), DeoptArgs.begin(), DeoptArgs.end()); Args.insert(Args.end(), GCArgs.begin(), GCArgs.end()); return Args; } template <typename T0, typename T1, typename T2, typename T3> static CallInst *CreateGCStatepointCallCommon( IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs, ArrayRef<T1> TransitionArgs, ArrayRef<T2> DeoptArgs, ArrayRef<T3> GCArgs, const Twine &Name) { // Extract out the type of the callee. PointerType *FuncPtrType = cast<PointerType>(ActualCallee->getType()); assert(isa<FunctionType>(FuncPtrType->getElementType()) && "actual callee must be a callable value"); Module *M = Builder->GetInsertBlock()->getParent()->getParent(); // Fill in the one generic type'd argument (the function is also vararg) Type *ArgTypes[] = { FuncPtrType }; Function *FnStatepoint = Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint, ArgTypes); std::vector<llvm::Value *> Args = getStatepointArgs(*Builder, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs); return createCallHelper(FnStatepoint, Args, Builder, Name); } CallInst *IRBuilderBase::CreateGCStatepointCall( uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, ArrayRef<Value *> CallArgs, ArrayRef<Value *> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) { return CreateGCStatepointCallCommon<Value *, Value *, Value *, Value *>( this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None), CallArgs, None /* No Transition Args */, DeoptArgs, GCArgs, Name); } CallInst *IRBuilderBase::CreateGCStatepointCall( uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, uint32_t Flags, ArrayRef<Use> CallArgs, ArrayRef<Use> TransitionArgs, ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) { return CreateGCStatepointCallCommon<Use, Use, Use, Value *>( this, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, Name); } CallInst *IRBuilderBase::CreateGCStatepointCall( uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, ArrayRef<Use> CallArgs, ArrayRef<Value *> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) { return CreateGCStatepointCallCommon<Use, Value *, Value *, Value *>( this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None), CallArgs, None, DeoptArgs, GCArgs, Name); } template <typename T0, typename T1, typename T2, typename T3> static InvokeInst *CreateGCStatepointInvokeCommon( IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags, ArrayRef<T0> InvokeArgs, ArrayRef<T1> TransitionArgs, ArrayRef<T2> DeoptArgs, ArrayRef<T3> GCArgs, const Twine &Name) { // Extract out the type of the callee. PointerType *FuncPtrType = cast<PointerType>(ActualInvokee->getType()); assert(isa<FunctionType>(FuncPtrType->getElementType()) && "actual callee must be a callable value"); Module *M = Builder->GetInsertBlock()->getParent()->getParent(); // Fill in the one generic type'd argument (the function is also vararg) Function *FnStatepoint = Intrinsic::getDeclaration( M, Intrinsic::experimental_gc_statepoint, {FuncPtrType}); std::vector<llvm::Value *> Args = getStatepointArgs(*Builder, ID, NumPatchBytes, ActualInvokee, Flags, InvokeArgs, TransitionArgs, DeoptArgs, GCArgs); return createInvokeHelper(FnStatepoint, NormalDest, UnwindDest, Args, Builder, Name); } InvokeInst *IRBuilderBase::CreateGCStatepointInvoke( uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs, ArrayRef<Value *> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) { return CreateGCStatepointInvokeCommon<Value *, Value *, Value *, Value *>( this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, uint32_t(StatepointFlags::None), InvokeArgs, None /* No Transition Args*/, DeoptArgs, GCArgs, Name); } InvokeInst *IRBuilderBase::CreateGCStatepointInvoke( uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags, ArrayRef<Use> InvokeArgs, ArrayRef<Use> TransitionArgs, ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) { return CreateGCStatepointInvokeCommon<Use, Use, Use, Value *>( this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags, InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name); } InvokeInst *IRBuilderBase::CreateGCStatepointInvoke( uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs, ArrayRef<Value *> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) { return CreateGCStatepointInvokeCommon<Use, Value *, Value *, Value *>( this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, uint32_t(StatepointFlags::None), InvokeArgs, None, DeoptArgs, GCArgs, Name); } CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint, Type *ResultType, const Twine &Name) { Intrinsic::ID ID = Intrinsic::experimental_gc_result; Module *M = BB->getParent()->getParent(); Type *Types[] = {ResultType}; Value *FnGCResult = Intrinsic::getDeclaration(M, ID, Types); Value *Args[] = {Statepoint}; return createCallHelper(FnGCResult, Args, this, Name); } CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint, int BaseOffset, int DerivedOffset, Type *ResultType, const Twine &Name) { Module *M = BB->getParent()->getParent(); Type *Types[] = {ResultType}; Value *FnGCRelocate = Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); Value *Args[] = {Statepoint, getInt32(BaseOffset), getInt32(DerivedOffset)}; return createCallHelper(FnGCRelocate, Args, this, Name); }