Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/IR/Instruction.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===-- Instruction.cpp - Implement the Instruction class -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Instruction class for the IR library. // //===----------------------------------------------------------------------===// #include "llvm/IR/Instruction.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" using namespace llvm; Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, Instruction *InsertBefore) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) { // If requested, insert this instruction into a basic block... if (InsertBefore) { BasicBlock *BB = InsertBefore->getParent(); assert(BB && "Instruction to insert before is not in a basic block!"); BB->getInstList().insert(InsertBefore->getIterator(), this); } } Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) { // append this instruction into the basic block assert(InsertAtEnd && "Basic block to append to may not be NULL!"); InsertAtEnd->getInstList().push_back(this); } // Out of line virtual method, so the vtable, etc has a home. Instruction::~Instruction() { assert(!Parent && "Instruction still linked in the program!"); if (hasMetadataHashEntry()) clearMetadataHashEntries(); } void Instruction::setParent(BasicBlock *P) { Parent = P; } const Module *Instruction::getModule() const { return getParent()->getModule(); } Module *Instruction::getModule() { return getParent()->getModule(); } Function *Instruction::getFunction() { return getParent()->getParent(); } const Function *Instruction::getFunction() const { return getParent()->getParent(); } void Instruction::removeFromParent() { getParent()->getInstList().remove(getIterator()); } iplist<Instruction>::iterator Instruction::eraseFromParent() { return getParent()->getInstList().erase(getIterator()); } /// Insert an unlinked instruction into a basic block immediately before the /// specified instruction. void Instruction::insertBefore(Instruction *InsertPos) { InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this); } /// Insert an unlinked instruction into a basic block immediately after the /// specified instruction. void Instruction::insertAfter(Instruction *InsertPos) { InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(), this); } /// Unlink this instruction from its current basic block and insert it into the /// basic block that MovePos lives in, right before MovePos. void Instruction::moveBefore(Instruction *MovePos) { MovePos->getParent()->getInstList().splice( MovePos->getIterator(), getParent()->getInstList(), getIterator()); } /// Set or clear the unsafe-algebra flag on this instruction, which must be an /// operator which supports this flag. See LangRef.html for the meaning of this /// flag. void Instruction::setHasUnsafeAlgebra(bool B) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B); } /// Set or clear the NoNaNs flag on this instruction, which must be an operator /// which supports this flag. See LangRef.html for the meaning of this flag. void Instruction::setHasNoNaNs(bool B) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setHasNoNaNs(B); } /// Set or clear the no-infs flag on this instruction, which must be an operator /// which supports this flag. See LangRef.html for the meaning of this flag. void Instruction::setHasNoInfs(bool B) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setHasNoInfs(B); } /// Set or clear the no-signed-zeros flag on this instruction, which must be an /// operator which supports this flag. See LangRef.html for the meaning of this /// flag. void Instruction::setHasNoSignedZeros(bool B) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setHasNoSignedZeros(B); } /// Set or clear the allow-reciprocal flag on this instruction, which must be an /// operator which supports this flag. See LangRef.html for the meaning of this /// flag. void Instruction::setHasAllowReciprocal(bool B) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setHasAllowReciprocal(B); } /// Convenience function for setting all the fast-math flags on this /// instruction, which must be an operator which supports these flags. See /// LangRef.html for the meaning of these flats. void Instruction::setFastMathFlags(FastMathFlags FMF) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setFastMathFlags(FMF); } void Instruction::copyFastMathFlags(FastMathFlags FMF) { assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op"); cast<FPMathOperator>(this)->copyFastMathFlags(FMF); } /// Determine whether the unsafe-algebra flag is set. bool Instruction::hasUnsafeAlgebra() const { assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->hasUnsafeAlgebra(); } /// Determine whether the no-NaNs flag is set. bool Instruction::hasNoNaNs() const { assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->hasNoNaNs(); } /// Determine whether the no-infs flag is set. bool Instruction::hasNoInfs() const { assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->hasNoInfs(); } /// Determine whether the no-signed-zeros flag is set. bool Instruction::hasNoSignedZeros() const { assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->hasNoSignedZeros(); } /// Determine whether the allow-reciprocal flag is set. bool Instruction::hasAllowReciprocal() const { assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->hasAllowReciprocal(); } /// Convenience function for getting all the fast-math flags, which must be an /// operator which supports these flags. See LangRef.html for the meaning of /// these flags. FastMathFlags Instruction::getFastMathFlags() const { assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->getFastMathFlags(); } /// Copy I's fast-math flags void Instruction::copyFastMathFlags(const Instruction *I) { copyFastMathFlags(I->getFastMathFlags()); } const char *Instruction::getOpcodeName(unsigned OpCode) { switch (OpCode) { // Terminators case Ret: return "ret"; case Br: return "br"; case Switch: return "switch"; case IndirectBr: return "indirectbr"; case Invoke: return "invoke"; case Resume: return "resume"; case Unreachable: return "unreachable"; case CleanupRet: return "cleanupret"; case CatchRet: return "catchret"; case CatchPad: return "catchpad"; case CatchSwitch: return "catchswitch"; // Standard binary operators... case Add: return "add"; case FAdd: return "fadd"; case Sub: return "sub"; case FSub: return "fsub"; case Mul: return "mul"; case FMul: return "fmul"; case UDiv: return "udiv"; case SDiv: return "sdiv"; case FDiv: return "fdiv"; case URem: return "urem"; case SRem: return "srem"; case FRem: return "frem"; // Logical operators... case And: return "and"; case Or : return "or"; case Xor: return "xor"; // Memory instructions... case Alloca: return "alloca"; case Load: return "load"; case Store: return "store"; case AtomicCmpXchg: return "cmpxchg"; case AtomicRMW: return "atomicrmw"; case Fence: return "fence"; case GetElementPtr: return "getelementptr"; // Convert instructions... case Trunc: return "trunc"; case ZExt: return "zext"; case SExt: return "sext"; case FPTrunc: return "fptrunc"; case FPExt: return "fpext"; case FPToUI: return "fptoui"; case FPToSI: return "fptosi"; case UIToFP: return "uitofp"; case SIToFP: return "sitofp"; case IntToPtr: return "inttoptr"; case PtrToInt: return "ptrtoint"; case BitCast: return "bitcast"; case AddrSpaceCast: return "addrspacecast"; // Other instructions... case ICmp: return "icmp"; case FCmp: return "fcmp"; case PHI: return "phi"; case Select: return "select"; case Call: return "call"; case Shl: return "shl"; case LShr: return "lshr"; case AShr: return "ashr"; case VAArg: return "va_arg"; case ExtractElement: return "extractelement"; case InsertElement: return "insertelement"; case ShuffleVector: return "shufflevector"; case ExtractValue: return "extractvalue"; case InsertValue: return "insertvalue"; case LandingPad: return "landingpad"; case CleanupPad: return "cleanuppad"; default: return "<Invalid operator> "; } } /// Return true if both instructions have the same special state /// This must be kept in sync with lib/Transforms/IPO/MergeFunctions.cpp. static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2, bool IgnoreAlignment = false) { assert(I1->getOpcode() == I2->getOpcode() && "Can not compare special state of different instructions"); if (const LoadInst *LI = dyn_cast<LoadInst>(I1)) return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() && (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() || IgnoreAlignment) && LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() && LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope(); if (const StoreInst *SI = dyn_cast<StoreInst>(I1)) return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() && (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() || IgnoreAlignment) && SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() && SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope(); if (const CmpInst *CI = dyn_cast<CmpInst>(I1)) return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate(); if (const CallInst *CI = dyn_cast<CallInst>(I1)) return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() && CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() && CI->getAttributes() == cast<CallInst>(I2)->getAttributes() && CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2)); if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1)) return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() && CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() && CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2)); if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices(); if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices(); if (const FenceInst *FI = dyn_cast<FenceInst>(I1)) return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() && FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope(); if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1)) return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() && CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() && CXI->getSuccessOrdering() == cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() && CXI->getFailureOrdering() == cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() && CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope(); if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1)) return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() && RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() && RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() && RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope(); return true; } /// isIdenticalTo - Return true if the specified instruction is exactly /// identical to the current one. This means that all operands match and any /// extra information (e.g. load is volatile) agree. bool Instruction::isIdenticalTo(const Instruction *I) const { return isIdenticalToWhenDefined(I) && SubclassOptionalData == I->SubclassOptionalData; } /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it /// ignores the SubclassOptionalData flags, which specify conditions /// under which the instruction's result is undefined. bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const { if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || getType() != I->getType()) return false; // If both instructions have no operands, they are identical. if (getNumOperands() == 0 && I->getNumOperands() == 0) return haveSameSpecialState(this, I); // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same. if (!std::equal(op_begin(), op_end(), I->op_begin())) return false; if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) { const PHINode *otherPHI = cast<PHINode>(I); return std::equal(thisPHI->block_begin(), thisPHI->block_end(), otherPHI->block_begin()); } return haveSameSpecialState(this, I); } // isSameOperationAs // This should be kept in sync with isEquivalentOperation in // lib/Transforms/IPO/MergeFunctions.cpp. bool Instruction::isSameOperationAs(const Instruction *I, unsigned flags) const { bool IgnoreAlignment = flags & CompareIgnoringAlignment; bool UseScalarTypes = flags & CompareUsingScalarTypes; if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || (UseScalarTypes ? getType()->getScalarType() != I->getType()->getScalarType() : getType() != I->getType())) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same type for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (UseScalarTypes ? getOperand(i)->getType()->getScalarType() != I->getOperand(i)->getType()->getScalarType() : getOperand(i)->getType() != I->getOperand(i)->getType()) return false; return haveSameSpecialState(this, I, IgnoreAlignment); } /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the /// specified block. Note that PHI nodes are considered to evaluate their /// operands in the corresponding predecessor block. bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const { for (const Use &U : uses()) { // PHI nodes uses values in the corresponding predecessor block. For other // instructions, just check to see whether the parent of the use matches up. const Instruction *I = cast<Instruction>(U.getUser()); const PHINode *PN = dyn_cast<PHINode>(I); if (!PN) { if (I->getParent() != BB) return true; continue; } if (PN->getIncomingBlock(U) != BB) return true; } return false; } /// mayReadFromMemory - Return true if this instruction may read memory. /// bool Instruction::mayReadFromMemory() const { switch (getOpcode()) { default: return false; case Instruction::VAArg: case Instruction::Load: case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::CatchPad: case Instruction::CatchRet: return true; case Instruction::Call: return !cast<CallInst>(this)->doesNotAccessMemory(); case Instruction::Invoke: return !cast<InvokeInst>(this)->doesNotAccessMemory(); case Instruction::Store: return !cast<StoreInst>(this)->isUnordered(); } } /// mayWriteToMemory - Return true if this instruction may modify memory. /// bool Instruction::mayWriteToMemory() const { switch (getOpcode()) { default: return false; case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory case Instruction::Store: case Instruction::VAArg: case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::CatchPad: case Instruction::CatchRet: return true; case Instruction::Call: return !cast<CallInst>(this)->onlyReadsMemory(); case Instruction::Invoke: return !cast<InvokeInst>(this)->onlyReadsMemory(); case Instruction::Load: return !cast<LoadInst>(this)->isUnordered(); } } bool Instruction::isAtomic() const { switch (getOpcode()) { default: return false; case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::Fence: return true; case Instruction::Load: return cast<LoadInst>(this)->getOrdering() != NotAtomic; case Instruction::Store: return cast<StoreInst>(this)->getOrdering() != NotAtomic; } } bool Instruction::mayThrow() const { if (const CallInst *CI = dyn_cast<CallInst>(this)) return !CI->doesNotThrow(); if (const auto *CRI = dyn_cast<CleanupReturnInst>(this)) return CRI->unwindsToCaller(); if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(this)) return CatchSwitch->unwindsToCaller(); return isa<ResumeInst>(this); } bool Instruction::mayReturn() const { if (const CallInst *CI = dyn_cast<CallInst>(this)) return !CI->doesNotReturn(); return true; } /// isAssociative - Return true if the instruction is associative: /// /// Associative operators satisfy: x op (y op z) === (x op y) op z /// /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. /// bool Instruction::isAssociative(unsigned Opcode) { return Opcode == And || Opcode == Or || Opcode == Xor || Opcode == Add || Opcode == Mul; } bool Instruction::isAssociative() const { unsigned Opcode = getOpcode(); if (isAssociative(Opcode)) return true; switch (Opcode) { case FMul: case FAdd: return cast<FPMathOperator>(this)->hasUnsafeAlgebra(); default: return false; } } /// isCommutative - Return true if the instruction is commutative: /// /// Commutative operators satisfy: (x op y) === (y op x) /// /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when /// applied to any type. /// bool Instruction::isCommutative(unsigned op) { switch (op) { case Add: case FAdd: case Mul: case FMul: case And: case Or: case Xor: return true; default: return false; } } /// isIdempotent - Return true if the instruction is idempotent: /// /// Idempotent operators satisfy: x op x === x /// /// In LLVM, the And and Or operators are idempotent. /// bool Instruction::isIdempotent(unsigned Opcode) { return Opcode == And || Opcode == Or; } /// isNilpotent - Return true if the instruction is nilpotent: /// /// Nilpotent operators satisfy: x op x === Id, /// /// where Id is the identity for the operator, i.e. a constant such that /// x op Id === x and Id op x === x for all x. /// /// In LLVM, the Xor operator is nilpotent. /// bool Instruction::isNilpotent(unsigned Opcode) { return Opcode == Xor; } Instruction *Instruction::cloneImpl() const { llvm_unreachable("Subclass of Instruction failed to implement cloneImpl"); } Instruction *Instruction::clone() const { Instruction *New = nullptr; switch (getOpcode()) { default: llvm_unreachable("Unhandled Opcode."); #define HANDLE_INST(num, opc, clas) \ case Instruction::opc: \ New = cast<clas>(this)->cloneImpl(); \ break; #include "llvm/IR/Instruction.def" #undef HANDLE_INST } New->SubclassOptionalData = SubclassOptionalData; if (!hasMetadata()) return New; // Otherwise, enumerate and copy over metadata from the old instruction to the // new one. SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs; getAllMetadataOtherThanDebugLoc(TheMDs); for (const auto &MD : TheMDs) New->setMetadata(MD.first, MD.second); New->setDebugLoc(getDebugLoc()); return New; }