Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/MC/MCELFStreamer.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===- lib/MC/MCELFStreamer.cpp - ELF Object Output -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file assembles .s files and emits ELF .o object files. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCELFStreamer.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSymbolELF.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ELF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; bool MCELFStreamer::isBundleLocked() const { return getCurrentSectionOnly()->isBundleLocked(); } MCELFStreamer::~MCELFStreamer() { } void MCELFStreamer::mergeFragment(MCDataFragment *DF, MCDataFragment *EF) { MCAssembler &Assembler = getAssembler(); if (Assembler.isBundlingEnabled() && Assembler.getRelaxAll()) { uint64_t FSize = EF->getContents().size(); if (FSize > Assembler.getBundleAlignSize()) report_fatal_error("Fragment can't be larger than a bundle size"); uint64_t RequiredBundlePadding = computeBundlePadding( Assembler, EF, DF->getContents().size(), FSize); if (RequiredBundlePadding > UINT8_MAX) report_fatal_error("Padding cannot exceed 255 bytes"); if (RequiredBundlePadding > 0) { SmallString<256> Code; raw_svector_ostream VecOS(Code); MCObjectWriter *OW = Assembler.getBackend().createObjectWriter(VecOS); EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); Assembler.writeFragmentPadding(*EF, FSize, OW); delete OW; DF->getContents().append(Code.begin(), Code.end()); } } flushPendingLabels(DF, DF->getContents().size()); for (unsigned i = 0, e = EF->getFixups().size(); i != e; ++i) { EF->getFixups()[i].setOffset(EF->getFixups()[i].getOffset() + DF->getContents().size()); DF->getFixups().push_back(EF->getFixups()[i]); } DF->setHasInstructions(true); DF->getContents().append(EF->getContents().begin(), EF->getContents().end()); } void MCELFStreamer::InitSections(bool NoExecStack) { MCContext &Ctx = getContext(); SwitchSection(Ctx.getObjectFileInfo()->getTextSection()); EmitCodeAlignment(4); if (NoExecStack) SwitchSection(Ctx.getAsmInfo()->getNonexecutableStackSection(Ctx)); } void MCELFStreamer::EmitLabel(MCSymbol *S) { auto *Symbol = cast<MCSymbolELF>(S); assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); MCObjectStreamer::EmitLabel(Symbol); const MCSectionELF &Section = static_cast<const MCSectionELF &>(*getCurrentSectionOnly()); if (Section.getFlags() & ELF::SHF_TLS) Symbol->setType(ELF::STT_TLS); } void MCELFStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) { // Let the target do whatever target specific stuff it needs to do. getAssembler().getBackend().handleAssemblerFlag(Flag); // Do any generic stuff we need to do. switch (Flag) { case MCAF_SyntaxUnified: return; // no-op here. case MCAF_Code16: return; // Change parsing mode; no-op here. case MCAF_Code32: return; // Change parsing mode; no-op here. case MCAF_Code64: return; // Change parsing mode; no-op here. case MCAF_SubsectionsViaSymbols: getAssembler().setSubsectionsViaSymbols(true); return; } llvm_unreachable("invalid assembler flag!"); } // If bundle alignment is used and there are any instructions in the section, it // needs to be aligned to at least the bundle size. static void setSectionAlignmentForBundling(const MCAssembler &Assembler, MCSection *Section) { if (Section && Assembler.isBundlingEnabled() && Section->hasInstructions() && Section->getAlignment() < Assembler.getBundleAlignSize()) Section->setAlignment(Assembler.getBundleAlignSize()); } void MCELFStreamer::ChangeSection(MCSection *Section, const MCExpr *Subsection) { MCSection *CurSection = getCurrentSectionOnly(); if (CurSection && isBundleLocked()) report_fatal_error("Unterminated .bundle_lock when changing a section"); MCAssembler &Asm = getAssembler(); // Ensure the previous section gets aligned if necessary. setSectionAlignmentForBundling(Asm, CurSection); auto *SectionELF = static_cast<const MCSectionELF *>(Section); const MCSymbol *Grp = SectionELF->getGroup(); if (Grp) Asm.registerSymbol(*Grp); this->MCObjectStreamer::ChangeSection(Section, Subsection); MCContext &Ctx = getContext(); auto *Begin = cast_or_null<MCSymbolELF>(Section->getBeginSymbol()); if (!Begin) { Begin = Ctx.getOrCreateSectionSymbol(*SectionELF); Section->setBeginSymbol(Begin); } if (Begin->isUndefined()) { Asm.registerSymbol(*Begin); Begin->setType(ELF::STT_SECTION); } } void MCELFStreamer::EmitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol) { getAssembler().registerSymbol(*Symbol); const MCExpr *Value = MCSymbolRefExpr::create( Symbol, MCSymbolRefExpr::VK_WEAKREF, getContext()); Alias->setVariableValue(Value); } // When GNU as encounters more than one .type declaration for an object it seems // to use a mechanism similar to the one below to decide which type is actually // used in the object file. The greater of T1 and T2 is selected based on the // following ordering: // STT_NOTYPE < STT_OBJECT < STT_FUNC < STT_GNU_IFUNC < STT_TLS < anything else // If neither T1 < T2 nor T2 < T1 according to this ordering, use T2 (the user // provided type). static unsigned CombineSymbolTypes(unsigned T1, unsigned T2) { for (unsigned Type : {ELF::STT_NOTYPE, ELF::STT_OBJECT, ELF::STT_FUNC, ELF::STT_GNU_IFUNC, ELF::STT_TLS}) { if (T1 == Type) return T2; if (T2 == Type) return T1; } return T2; } bool MCELFStreamer::EmitSymbolAttribute(MCSymbol *S, MCSymbolAttr Attribute) { auto *Symbol = cast<MCSymbolELF>(S); // Indirect symbols are handled differently, to match how 'as' handles // them. This makes writing matching .o files easier. if (Attribute == MCSA_IndirectSymbol) { // Note that we intentionally cannot use the symbol data here; this is // important for matching the string table that 'as' generates. IndirectSymbolData ISD; ISD.Symbol = Symbol; ISD.Section = getCurrentSectionOnly(); getAssembler().getIndirectSymbols().push_back(ISD); return true; } // Adding a symbol attribute always introduces the symbol, note that an // important side effect of calling registerSymbol here is to register // the symbol with the assembler. getAssembler().registerSymbol(*Symbol); // The implementation of symbol attributes is designed to match 'as', but it // leaves much to desired. It doesn't really make sense to arbitrarily add and // remove flags, but 'as' allows this (in particular, see .desc). // // In the future it might be worth trying to make these operations more well // defined. switch (Attribute) { case MCSA_LazyReference: case MCSA_Reference: case MCSA_SymbolResolver: case MCSA_PrivateExtern: case MCSA_WeakDefinition: case MCSA_WeakDefAutoPrivate: case MCSA_Invalid: case MCSA_IndirectSymbol: return false; case MCSA_NoDeadStrip: // Ignore for now. break; case MCSA_ELF_TypeGnuUniqueObject: Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_OBJECT)); Symbol->setBinding(ELF::STB_GNU_UNIQUE); Symbol->setExternal(true); break; case MCSA_Global: Symbol->setBinding(ELF::STB_GLOBAL); Symbol->setExternal(true); break; case MCSA_WeakReference: case MCSA_Weak: Symbol->setBinding(ELF::STB_WEAK); Symbol->setExternal(true); break; case MCSA_Local: Symbol->setBinding(ELF::STB_LOCAL); Symbol->setExternal(false); break; case MCSA_ELF_TypeFunction: Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_FUNC)); break; case MCSA_ELF_TypeIndFunction: Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_GNU_IFUNC)); break; case MCSA_ELF_TypeObject: Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_OBJECT)); break; case MCSA_ELF_TypeTLS: Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_TLS)); break; case MCSA_ELF_TypeCommon: // TODO: Emit these as a common symbol. Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_OBJECT)); break; case MCSA_ELF_TypeNoType: Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_NOTYPE)); break; case MCSA_Protected: Symbol->setVisibility(ELF::STV_PROTECTED); break; case MCSA_Hidden: Symbol->setVisibility(ELF::STV_HIDDEN); break; case MCSA_Internal: Symbol->setVisibility(ELF::STV_INTERNAL); break; } return true; } void MCELFStreamer::EmitCommonSymbol(MCSymbol *S, uint64_t Size, unsigned ByteAlignment) { auto *Symbol = cast<MCSymbolELF>(S); getAssembler().registerSymbol(*Symbol); if (!Symbol->isBindingSet()) { Symbol->setBinding(ELF::STB_GLOBAL); Symbol->setExternal(true); } Symbol->setType(ELF::STT_OBJECT); if (Symbol->getBinding() == ELF::STB_LOCAL) { MCSection &Section = *getAssembler().getContext().getELFSection( ".bss", ELF::SHT_NOBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC); MCSectionSubPair P = getCurrentSection(); SwitchSection(&Section); EmitValueToAlignment(ByteAlignment, 0, 1, 0); EmitLabel(Symbol); EmitZeros(Size); // Update the maximum alignment of the section if necessary. if (ByteAlignment > Section.getAlignment()) Section.setAlignment(ByteAlignment); SwitchSection(P.first, P.second); } else { if(Symbol->declareCommon(Size, ByteAlignment)) report_fatal_error("Symbol: " + Symbol->getName() + " redeclared as different type"); } cast<MCSymbolELF>(Symbol) ->setSize(MCConstantExpr::create(Size, getContext())); } void MCELFStreamer::emitELFSize(MCSymbolELF *Symbol, const MCExpr *Value) { Symbol->setSize(Value); } void MCELFStreamer::EmitLocalCommonSymbol(MCSymbol *S, uint64_t Size, unsigned ByteAlignment) { auto *Symbol = cast<MCSymbolELF>(S); // FIXME: Should this be caught and done earlier? getAssembler().registerSymbol(*Symbol); Symbol->setBinding(ELF::STB_LOCAL); Symbol->setExternal(false); EmitCommonSymbol(Symbol, Size, ByteAlignment); } void MCELFStreamer::EmitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) { if (isBundleLocked()) report_fatal_error("Emitting values inside a locked bundle is forbidden"); fixSymbolsInTLSFixups(Value); MCObjectStreamer::EmitValueImpl(Value, Size, Loc); } void MCELFStreamer::EmitValueToAlignment(unsigned ByteAlignment, int64_t Value, unsigned ValueSize, unsigned MaxBytesToEmit) { if (isBundleLocked()) report_fatal_error("Emitting values inside a locked bundle is forbidden"); MCObjectStreamer::EmitValueToAlignment(ByteAlignment, Value, ValueSize, MaxBytesToEmit); } // Add a symbol for the file name of this module. They start after the // null symbol and don't count as normal symbol, i.e. a non-STT_FILE symbol // with the same name may appear. void MCELFStreamer::EmitFileDirective(StringRef Filename) { getAssembler().addFileName(Filename); } void MCELFStreamer::EmitIdent(StringRef IdentString) { MCSection *Comment = getAssembler().getContext().getELFSection( ".comment", ELF::SHT_PROGBITS, ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, ""); PushSection(); SwitchSection(Comment); if (!SeenIdent) { EmitIntValue(0, 1); SeenIdent = true; } EmitBytes(IdentString); EmitIntValue(0, 1); PopSection(); } void MCELFStreamer::fixSymbolsInTLSFixups(const MCExpr *expr) { switch (expr->getKind()) { case MCExpr::Target: cast<MCTargetExpr>(expr)->fixELFSymbolsInTLSFixups(getAssembler()); break; case MCExpr::Constant: break; case MCExpr::Binary: { const MCBinaryExpr *be = cast<MCBinaryExpr>(expr); fixSymbolsInTLSFixups(be->getLHS()); fixSymbolsInTLSFixups(be->getRHS()); break; } case MCExpr::SymbolRef: { const MCSymbolRefExpr &symRef = *cast<MCSymbolRefExpr>(expr); switch (symRef.getKind()) { default: return; case MCSymbolRefExpr::VK_GOTTPOFF: case MCSymbolRefExpr::VK_INDNTPOFF: case MCSymbolRefExpr::VK_NTPOFF: case MCSymbolRefExpr::VK_GOTNTPOFF: case MCSymbolRefExpr::VK_TLSGD: case MCSymbolRefExpr::VK_TLSLD: case MCSymbolRefExpr::VK_TLSLDM: case MCSymbolRefExpr::VK_TPOFF: case MCSymbolRefExpr::VK_DTPOFF: case MCSymbolRefExpr::VK_Mips_TLSGD: case MCSymbolRefExpr::VK_Mips_GOTTPREL: case MCSymbolRefExpr::VK_Mips_TPREL_HI: case MCSymbolRefExpr::VK_Mips_TPREL_LO: case MCSymbolRefExpr::VK_PPC_DTPMOD: case MCSymbolRefExpr::VK_PPC_TPREL: case MCSymbolRefExpr::VK_PPC_TPREL_LO: case MCSymbolRefExpr::VK_PPC_TPREL_HI: case MCSymbolRefExpr::VK_PPC_TPREL_HA: case MCSymbolRefExpr::VK_PPC_TPREL_HIGHER: case MCSymbolRefExpr::VK_PPC_TPREL_HIGHERA: case MCSymbolRefExpr::VK_PPC_TPREL_HIGHEST: case MCSymbolRefExpr::VK_PPC_TPREL_HIGHESTA: case MCSymbolRefExpr::VK_PPC_DTPREL: case MCSymbolRefExpr::VK_PPC_DTPREL_LO: case MCSymbolRefExpr::VK_PPC_DTPREL_HI: case MCSymbolRefExpr::VK_PPC_DTPREL_HA: case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHER: case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHERA: case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHEST: case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHESTA: case MCSymbolRefExpr::VK_PPC_GOT_TPREL: case MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO: case MCSymbolRefExpr::VK_PPC_GOT_TPREL_HI: case MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA: case MCSymbolRefExpr::VK_PPC_GOT_DTPREL: case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_LO: case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_HI: case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_HA: case MCSymbolRefExpr::VK_PPC_TLS: case MCSymbolRefExpr::VK_PPC_GOT_TLSGD: case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO: case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HI: case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA: case MCSymbolRefExpr::VK_PPC_TLSGD: case MCSymbolRefExpr::VK_PPC_GOT_TLSLD: case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO: case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HI: case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA: case MCSymbolRefExpr::VK_PPC_TLSLD: break; } getAssembler().registerSymbol(symRef.getSymbol()); cast<MCSymbolELF>(symRef.getSymbol()).setType(ELF::STT_TLS); break; } case MCExpr::Unary: fixSymbolsInTLSFixups(cast<MCUnaryExpr>(expr)->getSubExpr()); break; } } void MCELFStreamer::EmitInstToFragment(const MCInst &Inst, const MCSubtargetInfo &STI) { this->MCObjectStreamer::EmitInstToFragment(Inst, STI); MCRelaxableFragment &F = *cast<MCRelaxableFragment>(getCurrentFragment()); for (unsigned i = 0, e = F.getFixups().size(); i != e; ++i) fixSymbolsInTLSFixups(F.getFixups()[i].getValue()); } void MCELFStreamer::EmitInstToData(const MCInst &Inst, const MCSubtargetInfo &STI) { MCAssembler &Assembler = getAssembler(); SmallVector<MCFixup, 4> Fixups; SmallString<256> Code; raw_svector_ostream VecOS(Code); Assembler.getEmitter().encodeInstruction(Inst, VecOS, Fixups, STI); for (unsigned i = 0, e = Fixups.size(); i != e; ++i) fixSymbolsInTLSFixups(Fixups[i].getValue()); // There are several possibilities here: // // If bundling is disabled, append the encoded instruction to the current data // fragment (or create a new such fragment if the current fragment is not a // data fragment). // // If bundling is enabled: // - If we're not in a bundle-locked group, emit the instruction into a // fragment of its own. If there are no fixups registered for the // instruction, emit a MCCompactEncodedInstFragment. Otherwise, emit a // MCDataFragment. // - If we're in a bundle-locked group, append the instruction to the current // data fragment because we want all the instructions in a group to get into // the same fragment. Be careful not to do that for the first instruction in // the group, though. MCDataFragment *DF; if (Assembler.isBundlingEnabled()) { MCSection &Sec = *getCurrentSectionOnly(); if (Assembler.getRelaxAll() && isBundleLocked()) // If the -mc-relax-all flag is used and we are bundle-locked, we re-use // the current bundle group. DF = BundleGroups.back(); else if (Assembler.getRelaxAll() && !isBundleLocked()) // When not in a bundle-locked group and the -mc-relax-all flag is used, // we create a new temporary fragment which will be later merged into // the current fragment. DF = new MCDataFragment(); else if (isBundleLocked() && !Sec.isBundleGroupBeforeFirstInst()) // If we are bundle-locked, we re-use the current fragment. // The bundle-locking directive ensures this is a new data fragment. DF = cast<MCDataFragment>(getCurrentFragment()); else if (!isBundleLocked() && Fixups.size() == 0) { // Optimize memory usage by emitting the instruction to a // MCCompactEncodedInstFragment when not in a bundle-locked group and // there are no fixups registered. MCCompactEncodedInstFragment *CEIF = new MCCompactEncodedInstFragment(); insert(CEIF); CEIF->getContents().append(Code.begin(), Code.end()); return; } else { DF = new MCDataFragment(); insert(DF); } if (Sec.getBundleLockState() == MCSection::BundleLockedAlignToEnd) { // If this fragment is for a group marked "align_to_end", set a flag // in the fragment. This can happen after the fragment has already been // created if there are nested bundle_align groups and an inner one // is the one marked align_to_end. DF->setAlignToBundleEnd(true); } // We're now emitting an instruction in a bundle group, so this flag has // to be turned off. Sec.setBundleGroupBeforeFirstInst(false); } else { DF = getOrCreateDataFragment(); } // Add the fixups and data. for (unsigned i = 0, e = Fixups.size(); i != e; ++i) { Fixups[i].setOffset(Fixups[i].getOffset() + DF->getContents().size()); DF->getFixups().push_back(Fixups[i]); } DF->setHasInstructions(true); DF->getContents().append(Code.begin(), Code.end()); if (Assembler.isBundlingEnabled() && Assembler.getRelaxAll()) { if (!isBundleLocked()) { mergeFragment(getOrCreateDataFragment(), DF); delete DF; } } } void MCELFStreamer::EmitBundleAlignMode(unsigned AlignPow2) { assert(AlignPow2 <= 30 && "Invalid bundle alignment"); MCAssembler &Assembler = getAssembler(); if (AlignPow2 > 0 && (Assembler.getBundleAlignSize() == 0 || Assembler.getBundleAlignSize() == 1U << AlignPow2)) Assembler.setBundleAlignSize(1U << AlignPow2); else report_fatal_error(".bundle_align_mode cannot be changed once set"); } void MCELFStreamer::EmitBundleLock(bool AlignToEnd) { MCSection &Sec = *getCurrentSectionOnly(); // Sanity checks // if (!getAssembler().isBundlingEnabled()) report_fatal_error(".bundle_lock forbidden when bundling is disabled"); if (!isBundleLocked()) Sec.setBundleGroupBeforeFirstInst(true); if (getAssembler().getRelaxAll() && !isBundleLocked()) { // TODO: drop the lock state and set directly in the fragment MCDataFragment *DF = new MCDataFragment(); BundleGroups.push_back(DF); } Sec.setBundleLockState(AlignToEnd ? MCSection::BundleLockedAlignToEnd : MCSection::BundleLocked); } void MCELFStreamer::EmitBundleUnlock() { MCSection &Sec = *getCurrentSectionOnly(); // Sanity checks if (!getAssembler().isBundlingEnabled()) report_fatal_error(".bundle_unlock forbidden when bundling is disabled"); else if (!isBundleLocked()) report_fatal_error(".bundle_unlock without matching lock"); else if (Sec.isBundleGroupBeforeFirstInst()) report_fatal_error("Empty bundle-locked group is forbidden"); // When the -mc-relax-all flag is used, we emit instructions to fragments // stored on a stack. When the bundle unlock is emitted, we pop a fragment // from the stack a merge it to the one below. if (getAssembler().getRelaxAll()) { assert(!BundleGroups.empty() && "There are no bundle groups"); MCDataFragment *DF = BundleGroups.back(); // FIXME: Use BundleGroups to track the lock state instead. Sec.setBundleLockState(MCSection::NotBundleLocked); // FIXME: Use more separate fragments for nested groups. if (!isBundleLocked()) { mergeFragment(getOrCreateDataFragment(), DF); BundleGroups.pop_back(); delete DF; } if (Sec.getBundleLockState() != MCSection::BundleLockedAlignToEnd) getOrCreateDataFragment()->setAlignToBundleEnd(false); } else Sec.setBundleLockState(MCSection::NotBundleLocked); } void MCELFStreamer::FinishImpl() { // Ensure the last section gets aligned if necessary. MCSection *CurSection = getCurrentSectionOnly(); setSectionAlignmentForBundling(getAssembler(), CurSection); EmitFrames(nullptr); this->MCObjectStreamer::FinishImpl(); } MCStreamer *llvm::createELFStreamer(MCContext &Context, MCAsmBackend &MAB, raw_pwrite_stream &OS, MCCodeEmitter *CE, bool RelaxAll) { MCELFStreamer *S = new MCELFStreamer(Context, MAB, OS, CE); if (RelaxAll) S->getAssembler().setRelaxAll(true); return S; } void MCELFStreamer::EmitThumbFunc(MCSymbol *Func) { llvm_unreachable("Generic ELF doesn't support this directive"); } void MCELFStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) { llvm_unreachable("ELF doesn't support this directive"); } void MCELFStreamer::BeginCOFFSymbolDef(const MCSymbol *Symbol) { llvm_unreachable("ELF doesn't support this directive"); } void MCELFStreamer::EmitCOFFSymbolStorageClass(int StorageClass) { llvm_unreachable("ELF doesn't support this directive"); } void MCELFStreamer::EmitCOFFSymbolType(int Type) { llvm_unreachable("ELF doesn't support this directive"); } void MCELFStreamer::EndCOFFSymbolDef() { llvm_unreachable("ELF doesn't support this directive"); } void MCELFStreamer::EmitZerofill(MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { llvm_unreachable("ELF doesn't support this directive"); } void MCELFStreamer::EmitTBSSSymbol(MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { llvm_unreachable("ELF doesn't support this directive"); }