Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Support/BranchProbability.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===-------------- lib/Support/BranchProbability.cpp -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Branch Probability class. // //===----------------------------------------------------------------------===// #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include <cassert> using namespace llvm; const uint32_t BranchProbability::D; raw_ostream &BranchProbability::print(raw_ostream &OS) const { if (isUnknown()) return OS << "?%"; // Get a percentage rounded to two decimal digits. This avoids // implementation-defined rounding inside printf. double Percent = rint(((double)N / D) * 100.0 * 100.0) / 100.0; return OS << format("0x%08" PRIx32 " / 0x%08" PRIx32 " = %.2f%%", N, D, Percent); } void BranchProbability::dump() const { print(dbgs()) << '\n'; } BranchProbability::BranchProbability(uint32_t Numerator, uint32_t Denominator) { assert(Denominator > 0 && "Denominator cannot be 0!"); assert(Numerator <= Denominator && "Probability cannot be bigger than 1!"); if (Denominator == D) N = Numerator; else { uint64_t Prob64 = (Numerator * static_cast<uint64_t>(D) + Denominator / 2) / Denominator; N = static_cast<uint32_t>(Prob64); } } BranchProbability BranchProbability::getBranchProbability(uint64_t Numerator, uint64_t Denominator) { assert(Numerator <= Denominator && "Probability cannot be bigger than 1!"); // Scale down Denominator to fit in a 32-bit integer. int Scale = 0; while (Denominator > UINT32_MAX) { Denominator >>= 1; Scale++; } return BranchProbability(Numerator >> Scale, Denominator); } // If ConstD is not zero, then replace D by ConstD so that division and modulo // operations by D can be optimized, in case this function is not inlined by the // compiler. template <uint32_t ConstD> static uint64_t scale(uint64_t Num, uint32_t N, uint32_t D) { if (ConstD > 0) D = ConstD; assert(D && "divide by 0"); // Fast path for multiplying by 1.0. if (!Num || D == N) return Num; // Split Num into upper and lower parts to multiply, then recombine. uint64_t ProductHigh = (Num >> 32) * N; uint64_t ProductLow = (Num & UINT32_MAX) * N; // Split into 32-bit digits. uint32_t Upper32 = ProductHigh >> 32; uint32_t Lower32 = ProductLow & UINT32_MAX; uint32_t Mid32Partial = ProductHigh & UINT32_MAX; uint32_t Mid32 = Mid32Partial + (ProductLow >> 32); // Carry. Upper32 += Mid32 < Mid32Partial; // Check for overflow. if (Upper32 >= D) return UINT64_MAX; uint64_t Rem = (uint64_t(Upper32) << 32) | Mid32; uint64_t UpperQ = Rem / D; // Check for overflow. if (UpperQ > UINT32_MAX) return UINT64_MAX; Rem = ((Rem % D) << 32) | Lower32; uint64_t LowerQ = Rem / D; uint64_t Q = (UpperQ << 32) + LowerQ; // Check for overflow. return Q < LowerQ ? UINT64_MAX : Q; } uint64_t BranchProbability::scale(uint64_t Num) const { return ::scale<D>(Num, N, D); } uint64_t BranchProbability::scaleByInverse(uint64_t Num) const { return ::scale<0>(Num, D, N); }