Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Support/Host.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the operating system Host concept. // //===----------------------------------------------------------------------===// #include "llvm/Support/Host.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/Config/config.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/raw_ostream.h" #include <string.h> // Include the platform-specific parts of this class. #ifdef LLVM_ON_UNIX #include "Unix/Host.inc" #endif #ifdef LLVM_ON_WIN32 #include "Windows/Host.inc" #endif #ifdef _MSC_VER #include <intrin.h> #endif #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) #include <mach/mach.h> #include <mach/mach_host.h> #include <mach/host_info.h> #include <mach/machine.h> #endif #define DEBUG_TYPE "host-detection" //===----------------------------------------------------------------------===// // // Implementations of the CPU detection routines // //===----------------------------------------------------------------------===// using namespace llvm; #if defined(__linux__) static ssize_t LLVM_ATTRIBUTE_UNUSED readCpuInfo(void *Buf, size_t Size) { // Note: We cannot mmap /proc/cpuinfo here and then process the resulting // memory buffer because the 'file' has 0 size (it can be read from only // as a stream). int FD; std::error_code EC = sys::fs::openFileForRead("/proc/cpuinfo", FD); if (EC) { DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << EC.message() << "\n"); return -1; } int Ret = read(FD, Buf, Size); int CloseStatus = close(FD); if (CloseStatus) return -1; return Ret; } #endif #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the /// specified arguments. If we can't run cpuid on the host, return true. static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__GNUC__) || defined(__clang__) #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. asm ("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) asm ("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; // pedantic #else returns to appease -Wunreachable-code (so we don't generate // postprocessed code that looks like "return true; return false;") #else return true; #endif #elif defined(_MSC_VER) // The MSVC intrinsic is portable across x86 and x64. int registers[4]; __cpuid(registers, value); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #else return true; #endif } /// GetX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the /// 4 values in the specified arguments. If we can't run cpuid on the host, /// return true. static bool GetX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) #if defined(__GNUC__) // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. asm ("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value), "c" (subleaf)); return false; #elif defined(_MSC_VER) int registers[4]; __cpuidex(registers, value, subleaf); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #else return true; #endif #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) #if defined(__GNUC__) asm ("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value), "c" (subleaf)); return false; #elif defined(_MSC_VER) __asm { mov eax,value mov ecx,subleaf cpuid mov esi,rEAX mov dword ptr [esi],eax mov esi,rEBX mov dword ptr [esi],ebx mov esi,rECX mov dword ptr [esi],ecx mov esi,rEDX mov dword ptr [esi],edx } return false; #else return true; #endif #else return true; #endif } static bool GetX86XCR0(unsigned *rEAX, unsigned *rEDX) { #if defined(__GNUC__) // Check xgetbv; this uses a .byte sequence instead of the instruction // directly because older assemblers do not include support for xgetbv and // there is no easy way to conditionally compile based on the assembler used. __asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (*rEAX), "=d" (*rEDX) : "c" (0)); return false; #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); *rEAX = Result; *rEDX = Result >> 32; return false; #else return true; #endif } static void DetectX86FamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) { Family = (EAX >> 8) & 0xf; // Bits 8 - 11 Model = (EAX >> 4) & 0xf; // Bits 4 - 7 if (Family == 6 || Family == 0xf) { if (Family == 0xf) // Examine extended family ID if family ID is F. Family += (EAX >> 20) & 0xff; // Bits 20 - 27 // Examine extended model ID if family ID is 6 or F. Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 } } StringRef sys::getHostCPUName() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) return "generic"; unsigned Family = 0; unsigned Model = 0; DetectX86FamilyModel(EAX, Family, Model); union { unsigned u[3]; char c[12]; } text; unsigned MaxLeaf; GetX86CpuIDAndInfo(0, &MaxLeaf, text.u+0, text.u+2, text.u+1); bool HasMMX = (EDX >> 23) & 1; bool HasSSE = (EDX >> 25) & 1; bool HasSSE2 = (EDX >> 26) & 1; bool HasSSE3 = (ECX >> 0) & 1; bool HasSSSE3 = (ECX >> 9) & 1; bool HasSSE41 = (ECX >> 19) & 1; bool HasSSE42 = (ECX >> 20) & 1; bool HasMOVBE = (ECX >> 22) & 1; // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV // indicates that the AVX registers will be saved and restored on context // switch, then we have full AVX support. const unsigned AVXBits = (1 << 27) | (1 << 28); bool HasAVX = ((ECX & AVXBits) == AVXBits) && !GetX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); bool HasLeaf7 = MaxLeaf >= 0x7 && !GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); bool HasADX = HasLeaf7 && ((EBX >> 19) & 1); bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20); bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1); GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); bool Em64T = (EDX >> 29) & 0x1; bool HasTBM = (ECX >> 21) & 0x1; if (memcmp(text.c, "GenuineIntel", 12) == 0) { switch (Family) { case 3: return "i386"; case 4: switch (Model) { case 0: // Intel486 DX processors case 1: // Intel486 DX processors case 2: // Intel486 SX processors case 3: // Intel487 processors, IntelDX2 OverDrive processors, // IntelDX2 processors case 4: // Intel486 SL processor case 5: // IntelSX2 processors case 7: // Write-Back Enhanced IntelDX2 processors case 8: // IntelDX4 OverDrive processors, IntelDX4 processors default: return "i486"; } case 5: switch (Model) { case 1: // Pentium OverDrive processor for Pentium processor (60, 66), // Pentium processors (60, 66) case 2: // Pentium OverDrive processor for Pentium processor (75, 90, // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133, // 150, 166, 200) case 3: // Pentium OverDrive processors for Intel486 processor-based // systems return "pentium"; case 4: // Pentium OverDrive processor with MMX technology for Pentium // processor (75, 90, 100, 120, 133), Pentium processor with // MMX technology (166, 200) return "pentium-mmx"; default: return "pentium"; } case 6: switch (Model) { case 1: // Pentium Pro processor return "pentiumpro"; case 3: // Intel Pentium II OverDrive processor, Pentium II processor, // model 03 case 5: // Pentium II processor, model 05, Pentium II Xeon processor, // model 05, and Intel Celeron processor, model 05 case 6: // Celeron processor, model 06 return "pentium2"; case 7: // Pentium III processor, model 07, and Pentium III Xeon // processor, model 07 case 8: // Pentium III processor, model 08, Pentium III Xeon processor, // model 08, and Celeron processor, model 08 case 10: // Pentium III Xeon processor, model 0Ah case 11: // Pentium III processor, model 0Bh return "pentium3"; case 9: // Intel Pentium M processor, Intel Celeron M processor model 09. case 13: // Intel Pentium M processor, Intel Celeron M processor, model // 0Dh. All processors are manufactured using the 90 nm process. case 21: // Intel EP80579 Integrated Processor and Intel EP80579 // Integrated Processor with Intel QuickAssist Technology return "pentium-m"; case 14: // Intel Core Duo processor, Intel Core Solo processor, model // 0Eh. All processors are manufactured using the 65 nm process. return "yonah"; case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile // processor, Intel Core 2 Quad processor, Intel Core 2 Quad // mobile processor, Intel Core 2 Extreme processor, Intel // Pentium Dual-Core processor, Intel Xeon processor, model // 0Fh. All processors are manufactured using the 65 nm process. case 22: // Intel Celeron processor model 16h. All processors are // manufactured using the 65 nm process return "core2"; case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model // 17h. All processors are manufactured using the 45 nm process. // // 45nm: Penryn , Wolfdale, Yorkfield (XE) case 29: // Intel Xeon processor MP. All processors are manufactured using // the 45 nm process. return "penryn"; case 26: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 45 nm process. case 30: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. // As found in a Summer 2010 model iMac. case 46: // Nehalem EX return "nehalem"; case 37: // Intel Core i7, laptop version. case 44: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 32 nm process. case 47: // Westmere EX return "westmere"; // SandyBridge: case 42: // Intel Core i7 processor. All processors are manufactured // using the 32 nm process. case 45: return "sandybridge"; // Ivy Bridge: case 58: case 62: // Ivy Bridge EP return "ivybridge"; // Haswell: case 60: case 63: case 69: case 70: return "haswell"; // Broadwell: case 61: case 71: return "broadwell"; // Skylake: case 78: case 94: return "skylake"; case 28: // Most 45 nm Intel Atom processors case 38: // 45 nm Atom Lincroft case 39: // 32 nm Atom Medfield case 53: // 32 nm Atom Midview case 54: // 32 nm Atom Midview return "bonnell"; // Atom Silvermont codes from the Intel software optimization guide. case 55: case 74: case 77: case 90: case 93: return "silvermont"; default: // Unknown family 6 CPU, try to guess. if (HasAVX512) return "knl"; if (HasADX) return "broadwell"; if (HasAVX2) return "haswell"; if (HasAVX) return "sandybridge"; if (HasSSE42) return HasMOVBE ? "silvermont" : "nehalem"; if (HasSSE41) return "penryn"; if (HasSSSE3) return HasMOVBE ? "bonnell" : "core2"; if (Em64T) return "x86-64"; if (HasSSE2) return "pentium-m"; if (HasSSE) return "pentium3"; if (HasMMX) return "pentium2"; return "pentiumpro"; } case 15: { switch (Model) { case 0: // Pentium 4 processor, Intel Xeon processor. All processors are // model 00h and manufactured using the 0.18 micron process. case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon // processor MP, and Intel Celeron processor. All processors are // model 01h and manufactured using the 0.18 micron process. case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M, // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron // processor, and Mobile Intel Celeron processor. All processors // are model 02h and manufactured using the 0.13 micron process. return (Em64T) ? "x86-64" : "pentium4"; case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D // processor. All processors are model 03h and manufactured using // the 90 nm process. case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition, // Pentium D processor, Intel Xeon processor, Intel Xeon // processor MP, Intel Celeron D processor. All processors are // model 04h and manufactured using the 90 nm process. case 6: // Pentium 4 processor, Pentium D processor, Pentium processor // Extreme Edition, Intel Xeon processor, Intel Xeon processor // MP, Intel Celeron D processor. All processors are model 06h // and manufactured using the 65 nm process. return (Em64T) ? "nocona" : "prescott"; default: return (Em64T) ? "x86-64" : "pentium4"; } } default: return "generic"; } } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { // FIXME: this poorly matches the generated SubtargetFeatureKV table. There // appears to be no way to generate the wide variety of AMD-specific targets // from the information returned from CPUID. switch (Family) { case 4: return "i486"; case 5: switch (Model) { case 6: case 7: return "k6"; case 8: return "k6-2"; case 9: case 13: return "k6-3"; case 10: return "geode"; default: return "pentium"; } case 6: switch (Model) { case 4: return "athlon-tbird"; case 6: case 7: case 8: return "athlon-mp"; case 10: return "athlon-xp"; default: return "athlon"; } case 15: if (HasSSE3) return "k8-sse3"; switch (Model) { case 1: return "opteron"; case 5: return "athlon-fx"; // also opteron default: return "athlon64"; } case 16: return "amdfam10"; case 20: return "btver1"; case 21: if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback. return "btver1"; if (Model >= 0x50) return "bdver4"; // 50h-6Fh: Excavator if (Model >= 0x30) return "bdver3"; // 30h-3Fh: Steamroller if (Model >= 0x10 || HasTBM) return "bdver2"; // 10h-1Fh: Piledriver return "bdver1"; // 00h-0Fh: Bulldozer case 22: if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback. return "btver1"; return "btver2"; default: return "generic"; } } return "generic"; } #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) StringRef sys::getHostCPUName() { host_basic_info_data_t hostInfo; mach_msg_type_number_t infoCount; infoCount = HOST_BASIC_INFO_COUNT; host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, &infoCount); if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic"; switch(hostInfo.cpu_subtype) { case CPU_SUBTYPE_POWERPC_601: return "601"; case CPU_SUBTYPE_POWERPC_602: return "602"; case CPU_SUBTYPE_POWERPC_603: return "603"; case CPU_SUBTYPE_POWERPC_603e: return "603e"; case CPU_SUBTYPE_POWERPC_603ev: return "603ev"; case CPU_SUBTYPE_POWERPC_604: return "604"; case CPU_SUBTYPE_POWERPC_604e: return "604e"; case CPU_SUBTYPE_POWERPC_620: return "620"; case CPU_SUBTYPE_POWERPC_750: return "750"; case CPU_SUBTYPE_POWERPC_7400: return "7400"; case CPU_SUBTYPE_POWERPC_7450: return "7450"; case CPU_SUBTYPE_POWERPC_970: return "970"; default: ; } return "generic"; } #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) StringRef sys::getHostCPUName() { // Access to the Processor Version Register (PVR) on PowerPC is privileged, // and so we must use an operating-system interface to determine the current // processor type. On Linux, this is exposed through the /proc/cpuinfo file. const char *generic = "generic"; // The cpu line is second (after the 'processor: 0' line), so if this // buffer is too small then something has changed (or is wrong). char buffer[1024]; ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); if (CPUInfoSize == -1) return generic; const char *CPUInfoStart = buffer; const char *CPUInfoEnd = buffer + CPUInfoSize; const char *CIP = CPUInfoStart; const char *CPUStart = 0; size_t CPULen = 0; // We need to find the first line which starts with cpu, spaces, and a colon. // After the colon, there may be some additional spaces and then the cpu type. while (CIP < CPUInfoEnd && CPUStart == 0) { if (CIP < CPUInfoEnd && *CIP == '\n') ++CIP; if (CIP < CPUInfoEnd && *CIP == 'c') { ++CIP; if (CIP < CPUInfoEnd && *CIP == 'p') { ++CIP; if (CIP < CPUInfoEnd && *CIP == 'u') { ++CIP; while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) ++CIP; if (CIP < CPUInfoEnd && *CIP == ':') { ++CIP; while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) ++CIP; if (CIP < CPUInfoEnd) { CPUStart = CIP; while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && *CIP != ',' && *CIP != '\n')) ++CIP; CPULen = CIP - CPUStart; } } } } } if (CPUStart == 0) while (CIP < CPUInfoEnd && *CIP != '\n') ++CIP; } if (CPUStart == 0) return generic; return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) .Case("604e", "604e") .Case("604", "604") .Case("7400", "7400") .Case("7410", "7400") .Case("7447", "7400") .Case("7455", "7450") .Case("G4", "g4") .Case("POWER4", "970") .Case("PPC970FX", "970") .Case("PPC970MP", "970") .Case("G5", "g5") .Case("POWER5", "g5") .Case("A2", "a2") .Case("POWER6", "pwr6") .Case("POWER7", "pwr7") .Case("POWER8", "pwr8") .Case("POWER8E", "pwr8") .Default(generic); } #elif defined(__linux__) && defined(__arm__) StringRef sys::getHostCPUName() { // The cpuid register on arm is not accessible from user space. On Linux, // it is exposed through the /proc/cpuinfo file. // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line // in all cases. char buffer[1024]; ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); if (CPUInfoSize == -1) return "generic"; StringRef Str(buffer, CPUInfoSize); SmallVector<StringRef, 32> Lines; Str.split(Lines, "\n"); // Look for the CPU implementer line. StringRef Implementer; for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU implementer")) Implementer = Lines[I].substr(15).ltrim("\t :"); if (Implementer == "0x41") // ARM Ltd. // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) .Case("0x926", "arm926ej-s") .Case("0xb02", "mpcore") .Case("0xb36", "arm1136j-s") .Case("0xb56", "arm1156t2-s") .Case("0xb76", "arm1176jz-s") .Case("0xc08", "cortex-a8") .Case("0xc09", "cortex-a9") .Case("0xc0f", "cortex-a15") .Case("0xc20", "cortex-m0") .Case("0xc23", "cortex-m3") .Case("0xc24", "cortex-m4") .Default("generic"); if (Implementer == "0x51") // Qualcomm Technologies, Inc. // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) .Case("0x06f", "krait") // APQ8064 .Default("generic"); return "generic"; } #elif defined(__linux__) && defined(__s390x__) StringRef sys::getHostCPUName() { // STIDP is a privileged operation, so use /proc/cpuinfo instead. // The "processor 0:" line comes after a fair amount of other information, // including a cache breakdown, but this should be plenty. char buffer[2048]; ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); if (CPUInfoSize == -1) return "generic"; StringRef Str(buffer, CPUInfoSize); SmallVector<StringRef, 32> Lines; Str.split(Lines, "\n"); // Look for the CPU features. SmallVector<StringRef, 32> CPUFeatures; for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("features")) { size_t Pos = Lines[I].find(":"); if (Pos != StringRef::npos) { Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); break; } } // We need to check for the presence of vector support independently of // the machine type, since we may only use the vector register set when // supported by the kernel (and hypervisor). bool HaveVectorSupport = false; for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { if (CPUFeatures[I] == "vx") HaveVectorSupport = true; } // Now check the processor machine type. for (unsigned I = 0, E = Lines.size(); I != E; ++I) { if (Lines[I].startswith("processor ")) { size_t Pos = Lines[I].find("machine = "); if (Pos != StringRef::npos) { Pos += sizeof("machine = ") - 1; unsigned int Id; if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { if (Id >= 2964 && HaveVectorSupport) return "z13"; if (Id >= 2827) return "zEC12"; if (Id >= 2817) return "z196"; } } break; } } return "generic"; } #else StringRef sys::getHostCPUName() { return "generic"; } #endif #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) bool sys::getHostCPUFeatures(StringMap<bool> &Features) { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; unsigned MaxLevel; union { unsigned u[3]; char c[12]; } text; if (GetX86CpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) || MaxLevel < 1) return false; GetX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); Features["cmov"] = (EDX >> 15) & 1; Features["mmx"] = (EDX >> 23) & 1; Features["sse"] = (EDX >> 25) & 1; Features["sse2"] = (EDX >> 26) & 1; Features["sse3"] = (ECX >> 0) & 1; Features["ssse3"] = (ECX >> 9) & 1; Features["sse4.1"] = (ECX >> 19) & 1; Features["sse4.2"] = (ECX >> 20) & 1; Features["pclmul"] = (ECX >> 1) & 1; Features["cx16"] = (ECX >> 13) & 1; Features["movbe"] = (ECX >> 22) & 1; Features["popcnt"] = (ECX >> 23) & 1; Features["aes"] = (ECX >> 25) & 1; Features["rdrnd"] = (ECX >> 30) & 1; // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV // indicates that the AVX registers will be saved and restored on context // switch, then we have full AVX support. bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && !GetX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); Features["avx"] = HasAVXSave; Features["fma"] = HasAVXSave && (ECX >> 12) & 1; Features["f16c"] = HasAVXSave && (ECX >> 29) & 1; // Only enable XSAVE if OS has enabled support for saving YMM state. Features["xsave"] = HasAVXSave && (ECX >> 26) & 1; // AVX512 requires additional context to be saved by the OS. bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); unsigned MaxExtLevel; GetX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && !GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1); Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1); Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1); Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1); bool HasLeaf7 = MaxLevel >= 7 && !GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); // AVX2 is only supported if we have the OS save support from AVX. Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1); Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1); Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1); Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1); Features["hle"] = HasLeaf7 && ((EBX >> 4) & 1); Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1); Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1); Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1); Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1); Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1); Features["smap"] = HasLeaf7 && ((EBX >> 20) & 1); Features["pcommit"] = HasLeaf7 && ((EBX >> 22) & 1); Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1); Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1); // AVX512 is only supported if the OS supports the context save for it. Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; Features["prefetchwt1"] = HasLeaf7 && (ECX & 1); Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save; // Enable protection keys Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1); bool HasLeafD = MaxLevel >= 0xd && !GetX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); // Only enable XSAVE if OS has enabled support for saving YMM state. Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1); Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1); Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1); return true; } #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) bool sys::getHostCPUFeatures(StringMap<bool> &Features) { // Read 1024 bytes from /proc/cpuinfo, which should contain the Features line // in all cases. char buffer[1024]; ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); if (CPUInfoSize == -1) return false; StringRef Str(buffer, CPUInfoSize); SmallVector<StringRef, 32> Lines; Str.split(Lines, "\n"); SmallVector<StringRef, 32> CPUFeatures; // Look for the CPU features. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("Features")) { Lines[I].split(CPUFeatures, ' '); break; } #if defined(__aarch64__) // Keep track of which crypto features we have seen enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; uint32_t crypto = 0; #endif for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I]) #if defined(__aarch64__) .Case("asimd", "neon") .Case("fp", "fp-armv8") .Case("crc32", "crc") #else .Case("half", "fp16") .Case("neon", "neon") .Case("vfpv3", "vfp3") .Case("vfpv3d16", "d16") .Case("vfpv4", "vfp4") .Case("idiva", "hwdiv-arm") .Case("idivt", "hwdiv") #endif .Default(""); #if defined(__aarch64__) // We need to check crypto separately since we need all of the crypto // extensions to enable the subtarget feature if (CPUFeatures[I] == "aes") crypto |= CAP_AES; else if (CPUFeatures[I] == "pmull") crypto |= CAP_PMULL; else if (CPUFeatures[I] == "sha1") crypto |= CAP_SHA1; else if (CPUFeatures[I] == "sha2") crypto |= CAP_SHA2; #endif if (LLVMFeatureStr != "") Features[LLVMFeatureStr] = true; } #if defined(__aarch64__) // If we have all crypto bits we can add the feature if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) Features["crypto"] = true; #endif return true; } #else bool sys::getHostCPUFeatures(StringMap<bool> &Features){ return false; } #endif std::string sys::getProcessTriple() { Triple PT(Triple::normalize(LLVM_HOST_TRIPLE)); if (sizeof(void *) == 8 && PT.isArch32Bit()) PT = PT.get64BitArchVariant(); if (sizeof(void *) == 4 && PT.isArch64Bit()) PT = PT.get32BitArchVariant(); return PT.str(); }