Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Support/TargetParser.cpp @ 107:a03ddd01be7e
resolve warnings
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jan 2016 17:34:49 +0900 |
parents | 7d135dc70f03 |
children | 1172e4bd9c6f |
line wrap: on
line source
//===-- TargetParser - Parser for target features ---------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a target parser to recognise hardware features such as // FPU/CPU/ARCH names as well as specific support such as HDIV, etc. // //===----------------------------------------------------------------------===// #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/TargetParser.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include <cctype> using namespace llvm; using namespace ARM; namespace { // List of canonical FPU names (use getFPUSynonym) and which architectural // features they correspond to (use getFPUFeatures). // FIXME: TableGen this. // The entries must appear in the order listed in ARM::FPUKind for correct indexing static const struct { const char *NameCStr; size_t NameLength; ARM::FPUKind ID; ARM::FPUVersion FPUVersion; ARM::NeonSupportLevel NeonSupport; ARM::FPURestriction Restriction; StringRef getName() const { return StringRef(NameCStr, NameLength); } } FPUNames[] = { #define ARM_FPU(NAME, KIND, VERSION, NEON_SUPPORT, RESTRICTION) \ { NAME, sizeof(NAME) - 1, KIND, VERSION, NEON_SUPPORT, RESTRICTION }, #include "llvm/Support/ARMTargetParser.def" }; // List of canonical arch names (use getArchSynonym). // This table also provides the build attribute fields for CPU arch // and Arch ID, according to the Addenda to the ARM ABI, chapters // 2.4 and 2.3.5.2 respectively. // FIXME: SubArch values were simplified to fit into the expectations // of the triples and are not conforming with their official names. // Check to see if the expectation should be changed. // FIXME: TableGen this. static const struct { const char *NameCStr; size_t NameLength; const char *CPUAttrCStr; size_t CPUAttrLength; const char *SubArchCStr; size_t SubArchLength; unsigned DefaultFPU; unsigned ArchBaseExtensions; ARM::ArchKind ID; ARMBuildAttrs::CPUArch ArchAttr; // Arch ID in build attributes. StringRef getName() const { return StringRef(NameCStr, NameLength); } // CPU class in build attributes. StringRef getCPUAttr() const { return StringRef(CPUAttrCStr, CPUAttrLength); } // Sub-Arch name. StringRef getSubArch() const { return StringRef(SubArchCStr, SubArchLength); } } ARCHNames[] = { #define ARM_ARCH(NAME, ID, CPU_ATTR, SUB_ARCH, ARCH_ATTR, ARCH_FPU, ARCH_BASE_EXT) \ {NAME, sizeof(NAME) - 1, CPU_ATTR, sizeof(CPU_ATTR) - 1, SUB_ARCH, \ sizeof(SUB_ARCH) - 1, ARCH_FPU, ARCH_BASE_EXT, ID, ARCH_ATTR}, #include "llvm/Support/ARMTargetParser.def" }; // List of Arch Extension names. // FIXME: TableGen this. static const struct { const char *NameCStr; size_t NameLength; unsigned ID; const char *Feature; const char *NegFeature; StringRef getName() const { return StringRef(NameCStr, NameLength); } } ARCHExtNames[] = { #define ARM_ARCH_EXT_NAME(NAME, ID, FEATURE, NEGFEATURE) \ { NAME, sizeof(NAME) - 1, ID, FEATURE, NEGFEATURE }, #include "llvm/Support/ARMTargetParser.def" }; // List of HWDiv names (use getHWDivSynonym) and which architectural // features they correspond to (use getHWDivFeatures). // FIXME: TableGen this. static const struct { const char *NameCStr; size_t NameLength; unsigned ID; StringRef getName() const { return StringRef(NameCStr, NameLength); } } HWDivNames[] = { #define ARM_HW_DIV_NAME(NAME, ID) { NAME, sizeof(NAME) - 1, ID }, #include "llvm/Support/ARMTargetParser.def" }; // List of CPU names and their arches. // The same CPU can have multiple arches and can be default on multiple arches. // When finding the Arch for a CPU, first-found prevails. Sort them accordingly. // When this becomes table-generated, we'd probably need two tables. // FIXME: TableGen this. static const struct { const char *NameCStr; size_t NameLength; ARM::ArchKind ArchID; bool Default; // is $Name the default CPU for $ArchID ? unsigned DefaultExtensions; StringRef getName() const { return StringRef(NameCStr, NameLength); } } CPUNames[] = { #define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ { NAME, sizeof(NAME) - 1, ID, IS_DEFAULT, DEFAULT_EXT }, #include "llvm/Support/ARMTargetParser.def" }; } // namespace // ======================================================= // // Information by ID // ======================================================= // StringRef llvm::ARM::getFPUName(unsigned FPUKind) { if (FPUKind >= ARM::FK_LAST) return StringRef(); return FPUNames[FPUKind].getName(); } unsigned llvm::ARM::getFPUVersion(unsigned FPUKind) { if (FPUKind >= ARM::FK_LAST) return 0; return FPUNames[FPUKind].FPUVersion; } unsigned llvm::ARM::getFPUNeonSupportLevel(unsigned FPUKind) { if (FPUKind >= ARM::FK_LAST) return 0; return FPUNames[FPUKind].NeonSupport; } unsigned llvm::ARM::getFPURestriction(unsigned FPUKind) { if (FPUKind >= ARM::FK_LAST) return 0; return FPUNames[FPUKind].Restriction; } unsigned llvm::ARM::getDefaultFPU(StringRef CPU, unsigned ArchKind) { if (CPU == "generic") return ARCHNames[ArchKind].DefaultFPU; return StringSwitch<unsigned>(CPU) #define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ .Case(NAME, DEFAULT_FPU) #include "llvm/Support/ARMTargetParser.def" .Default(ARM::FK_INVALID); } unsigned llvm::ARM::getDefaultExtensions(StringRef CPU, unsigned ArchKind) { if (CPU == "generic") return ARCHNames[ArchKind].ArchBaseExtensions; return StringSwitch<unsigned>(CPU) #define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ .Case(NAME, ARCHNames[ID].ArchBaseExtensions | DEFAULT_EXT) #include "llvm/Support/ARMTargetParser.def" .Default(ARM::AEK_INVALID); } bool llvm::ARM::getHWDivFeatures(unsigned HWDivKind, std::vector<const char *> &Features) { if (HWDivKind == ARM::AEK_INVALID) return false; if (HWDivKind & ARM::AEK_HWDIVARM) Features.push_back("+hwdiv-arm"); else Features.push_back("-hwdiv-arm"); if (HWDivKind & ARM::AEK_HWDIV) Features.push_back("+hwdiv"); else Features.push_back("-hwdiv"); return true; } bool llvm::ARM::getExtensionFeatures(unsigned Extensions, std::vector<const char *> &Features) { if (Extensions == ARM::AEK_INVALID) return false; if (Extensions & ARM::AEK_CRC) Features.push_back("+crc"); else Features.push_back("-crc"); if (Extensions & ARM::AEK_DSP) Features.push_back("+dsp"); else Features.push_back("-dsp"); return getHWDivFeatures(Extensions, Features); } bool llvm::ARM::getFPUFeatures(unsigned FPUKind, std::vector<const char *> &Features) { if (FPUKind >= ARM::FK_LAST || FPUKind == ARM::FK_INVALID) return false; // fp-only-sp and d16 subtarget features are independent of each other, so we // must enable/disable both. switch (FPUNames[FPUKind].Restriction) { case ARM::FR_SP_D16: Features.push_back("+fp-only-sp"); Features.push_back("+d16"); break; case ARM::FR_D16: Features.push_back("-fp-only-sp"); Features.push_back("+d16"); break; case ARM::FR_None: Features.push_back("-fp-only-sp"); Features.push_back("-d16"); break; } // FPU version subtarget features are inclusive of lower-numbered ones, so // enable the one corresponding to this version and disable all that are // higher. We also have to make sure to disable fp16 when vfp4 is disabled, // as +vfp4 implies +fp16 but -vfp4 does not imply -fp16. switch (FPUNames[FPUKind].FPUVersion) { case ARM::FV_VFPV5: Features.push_back("+fp-armv8"); break; case ARM::FV_VFPV4: Features.push_back("+vfp4"); Features.push_back("-fp-armv8"); break; case ARM::FV_VFPV3_FP16: Features.push_back("+vfp3"); Features.push_back("+fp16"); Features.push_back("-vfp4"); Features.push_back("-fp-armv8"); break; case ARM::FV_VFPV3: Features.push_back("+vfp3"); Features.push_back("-fp16"); Features.push_back("-vfp4"); Features.push_back("-fp-armv8"); break; case ARM::FV_VFPV2: Features.push_back("+vfp2"); Features.push_back("-vfp3"); Features.push_back("-fp16"); Features.push_back("-vfp4"); Features.push_back("-fp-armv8"); break; case ARM::FV_NONE: Features.push_back("-vfp2"); Features.push_back("-vfp3"); Features.push_back("-fp16"); Features.push_back("-vfp4"); Features.push_back("-fp-armv8"); break; } // crypto includes neon, so we handle this similarly to FPU version. switch (FPUNames[FPUKind].NeonSupport) { case ARM::NS_Crypto: Features.push_back("+neon"); Features.push_back("+crypto"); break; case ARM::NS_Neon: Features.push_back("+neon"); Features.push_back("-crypto"); break; case ARM::NS_None: Features.push_back("-neon"); Features.push_back("-crypto"); break; } return true; } StringRef llvm::ARM::getArchName(unsigned ArchKind) { if (ArchKind >= ARM::AK_LAST) return StringRef(); return ARCHNames[ArchKind].getName(); } StringRef llvm::ARM::getCPUAttr(unsigned ArchKind) { if (ArchKind >= ARM::AK_LAST) return StringRef(); return ARCHNames[ArchKind].getCPUAttr(); } StringRef llvm::ARM::getSubArch(unsigned ArchKind) { if (ArchKind >= ARM::AK_LAST) return StringRef(); return ARCHNames[ArchKind].getSubArch(); } unsigned llvm::ARM::getArchAttr(unsigned ArchKind) { if (ArchKind >= ARM::AK_LAST) return ARMBuildAttrs::CPUArch::Pre_v4; return ARCHNames[ArchKind].ArchAttr; } StringRef llvm::ARM::getArchExtName(unsigned ArchExtKind) { for (const auto AE : ARCHExtNames) { if (ArchExtKind == AE.ID) return AE.getName(); } return StringRef(); } const char *llvm::ARM::getArchExtFeature(StringRef ArchExt) { if (ArchExt.startswith("no")) { StringRef ArchExtBase(ArchExt.substr(2)); for (const auto AE : ARCHExtNames) { if (AE.NegFeature && ArchExtBase == AE.getName()) return AE.NegFeature; } } for (const auto AE : ARCHExtNames) { if (AE.Feature && ArchExt == AE.getName()) return AE.Feature; } return nullptr; } StringRef llvm::ARM::getHWDivName(unsigned HWDivKind) { for (const auto D : HWDivNames) { if (HWDivKind == D.ID) return D.getName(); } return StringRef(); } StringRef llvm::ARM::getDefaultCPU(StringRef Arch) { unsigned AK = parseArch(Arch); if (AK == ARM::AK_INVALID) return StringRef(); // Look for multiple AKs to find the default for pair AK+Name. for (const auto CPU : CPUNames) { if (CPU.ArchID == AK && CPU.Default) return CPU.getName(); } // If we can't find a default then target the architecture instead return "generic"; } // ======================================================= // // Parsers // ======================================================= // static StringRef getHWDivSynonym(StringRef HWDiv) { return StringSwitch<StringRef>(HWDiv) .Case("thumb,arm", "arm,thumb") .Default(HWDiv); } static StringRef getFPUSynonym(StringRef FPU) { return StringSwitch<StringRef>(FPU) .Cases("fpa", "fpe2", "fpe3", "maverick", "invalid") // Unsupported .Case("vfp2", "vfpv2") .Case("vfp3", "vfpv3") .Case("vfp4", "vfpv4") .Case("vfp3-d16", "vfpv3-d16") .Case("vfp4-d16", "vfpv4-d16") .Cases("fp4-sp-d16", "vfpv4-sp-d16", "fpv4-sp-d16") .Cases("fp4-dp-d16", "fpv4-dp-d16", "vfpv4-d16") .Case("fp5-sp-d16", "fpv5-sp-d16") .Cases("fp5-dp-d16", "fpv5-dp-d16", "fpv5-d16") // FIXME: Clang uses it, but it's bogus, since neon defaults to vfpv3. .Case("neon-vfpv3", "neon") .Default(FPU); } static StringRef getArchSynonym(StringRef Arch) { return StringSwitch<StringRef>(Arch) .Case("v5", "v5t") .Case("v5e", "v5te") .Case("v6j", "v6") .Case("v6hl", "v6k") .Cases("v6m", "v6sm", "v6s-m", "v6-m") .Cases("v6z", "v6zk", "v6kz") .Cases("v7", "v7a", "v7hl", "v7l", "v7-a") .Case("v7r", "v7-r") .Case("v7m", "v7-m") .Case("v7em", "v7e-m") .Cases("v8", "v8a", "aarch64", "arm64", "v8-a") .Case("v8.1a", "v8.1-a") .Case("v8.2a", "v8.2-a") .Case("v8m.base", "v8-m.base") .Case("v8m.main", "v8-m.main") .Default(Arch); } // MArch is expected to be of the form (arm|thumb)?(eb)?(v.+)?(eb)?, but // (iwmmxt|xscale)(eb)? is also permitted. If the former, return // "v.+", if the latter, return unmodified string, minus 'eb'. // If invalid, return empty string. StringRef llvm::ARM::getCanonicalArchName(StringRef Arch) { size_t offset = StringRef::npos; StringRef A = Arch; StringRef Error = ""; // Begins with "arm" / "thumb", move past it. if (A.startswith("arm64")) offset = 5; else if (A.startswith("arm")) offset = 3; else if (A.startswith("thumb")) offset = 5; else if (A.startswith("aarch64")) { offset = 7; // AArch64 uses "_be", not "eb" suffix. if (A.find("eb") != StringRef::npos) return Error; if (A.substr(offset, 3) == "_be") offset += 3; } // Ex. "armebv7", move past the "eb". if (offset != StringRef::npos && A.substr(offset, 2) == "eb") offset += 2; // Or, if it ends with eb ("armv7eb"), chop it off. else if (A.endswith("eb")) A = A.substr(0, A.size() - 2); // Trim the head if (offset != StringRef::npos) A = A.substr(offset); // Empty string means offset reached the end, which means it's valid. if (A.empty()) return Arch; // Only match non-marketing names if (offset != StringRef::npos) { // Must start with 'vN'. if (A[0] != 'v' || !std::isdigit(A[1])) return Error; // Can't have an extra 'eb'. if (A.find("eb") != StringRef::npos) return Error; } // Arch will either be a 'v' name (v7a) or a marketing name (xscale). return A; } unsigned llvm::ARM::parseHWDiv(StringRef HWDiv) { StringRef Syn = getHWDivSynonym(HWDiv); for (const auto D : HWDivNames) { if (Syn == D.getName()) return D.ID; } return ARM::AEK_INVALID; } unsigned llvm::ARM::parseFPU(StringRef FPU) { StringRef Syn = getFPUSynonym(FPU); for (const auto F : FPUNames) { if (Syn == F.getName()) return F.ID; } return ARM::FK_INVALID; } // Allows partial match, ex. "v7a" matches "armv7a". unsigned llvm::ARM::parseArch(StringRef Arch) { Arch = getCanonicalArchName(Arch); StringRef Syn = getArchSynonym(Arch); for (const auto A : ARCHNames) { if (A.getName().endswith(Syn)) return A.ID; } return ARM::AK_INVALID; } unsigned llvm::ARM::parseArchExt(StringRef ArchExt) { for (const auto A : ARCHExtNames) { if (ArchExt == A.getName()) return A.ID; } return ARM::AEK_INVALID; } unsigned llvm::ARM::parseCPUArch(StringRef CPU) { for (const auto C : CPUNames) { if (CPU == C.getName()) return C.ArchID; } return ARM::AK_INVALID; } // ARM, Thumb, AArch64 unsigned llvm::ARM::parseArchISA(StringRef Arch) { return StringSwitch<unsigned>(Arch) .StartsWith("aarch64", ARM::IK_AARCH64) .StartsWith("arm64", ARM::IK_AARCH64) .StartsWith("thumb", ARM::IK_THUMB) .StartsWith("arm", ARM::IK_ARM) .Default(ARM::EK_INVALID); } // Little/Big endian unsigned llvm::ARM::parseArchEndian(StringRef Arch) { if (Arch.startswith("armeb") || Arch.startswith("thumbeb") || Arch.startswith("aarch64_be")) return ARM::EK_BIG; if (Arch.startswith("arm") || Arch.startswith("thumb")) { if (Arch.endswith("eb")) return ARM::EK_BIG; else return ARM::EK_LITTLE; } if (Arch.startswith("aarch64")) return ARM::EK_LITTLE; return ARM::EK_INVALID; } // Profile A/R/M unsigned llvm::ARM::parseArchProfile(StringRef Arch) { Arch = getCanonicalArchName(Arch); switch (parseArch(Arch)) { case ARM::AK_ARMV6M: case ARM::AK_ARMV7M: case ARM::AK_ARMV7EM: case ARM::AK_ARMV8MMainline: case ARM::AK_ARMV8MBaseline: return ARM::PK_M; case ARM::AK_ARMV7R: return ARM::PK_R; case ARM::AK_ARMV7A: case ARM::AK_ARMV7K: case ARM::AK_ARMV8A: case ARM::AK_ARMV8_1A: case ARM::AK_ARMV8_2A: return ARM::PK_A; } return ARM::PK_INVALID; } // Version number (ex. v7 = 7). unsigned llvm::ARM::parseArchVersion(StringRef Arch) { Arch = getCanonicalArchName(Arch); switch (parseArch(Arch)) { case ARM::AK_ARMV2: case ARM::AK_ARMV2A: return 2; case ARM::AK_ARMV3: case ARM::AK_ARMV3M: return 3; case ARM::AK_ARMV4: case ARM::AK_ARMV4T: return 4; case ARM::AK_ARMV5T: case ARM::AK_ARMV5TE: case ARM::AK_IWMMXT: case ARM::AK_IWMMXT2: case ARM::AK_XSCALE: case ARM::AK_ARMV5TEJ: return 5; case ARM::AK_ARMV6: case ARM::AK_ARMV6K: case ARM::AK_ARMV6T2: case ARM::AK_ARMV6KZ: case ARM::AK_ARMV6M: return 6; case ARM::AK_ARMV7A: case ARM::AK_ARMV7R: case ARM::AK_ARMV7M: case ARM::AK_ARMV7S: case ARM::AK_ARMV7EM: case ARM::AK_ARMV7K: return 7; case ARM::AK_ARMV8A: case ARM::AK_ARMV8_1A: case ARM::AK_ARMV8_2A: case ARM::AK_ARMV8MBaseline: case ARM::AK_ARMV8MMainline: return 8; } return 0; }