Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Target/R600/AMDGPUFrameLowering.cpp @ 33:e4204d083e25
LLVM 3.5
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 14:32:10 +0900 |
parents | 95c75e76d11b |
children | 54457678186b |
line wrap: on
line source
//===----------------------- AMDGPUFrameLowering.cpp ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //==-----------------------------------------------------------------------===// // // Interface to describe a layout of a stack frame on a AMDIL target machine // //===----------------------------------------------------------------------===// #include "AMDGPUFrameLowering.h" #include "AMDGPURegisterInfo.h" #include "R600MachineFunctionInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Instructions.h" using namespace llvm; AMDGPUFrameLowering::AMDGPUFrameLowering(StackDirection D, unsigned StackAl, int LAO, unsigned TransAl) : TargetFrameLowering(D, StackAl, LAO, TransAl) { } AMDGPUFrameLowering::~AMDGPUFrameLowering() { } unsigned AMDGPUFrameLowering::getStackWidth(const MachineFunction &MF) const { // XXX: Hardcoding to 1 for now. // // I think the StackWidth should stored as metadata associated with the // MachineFunction. This metadata can either be added by a frontend, or // calculated by a R600 specific LLVM IR pass. // // The StackWidth determines how stack objects are laid out in memory. // For a vector stack variable, like: int4 stack[2], the data will be stored // in the following ways depending on the StackWidth. // // StackWidth = 1: // // T0.X = stack[0].x // T1.X = stack[0].y // T2.X = stack[0].z // T3.X = stack[0].w // T4.X = stack[1].x // T5.X = stack[1].y // T6.X = stack[1].z // T7.X = stack[1].w // // StackWidth = 2: // // T0.X = stack[0].x // T0.Y = stack[0].y // T1.X = stack[0].z // T1.Y = stack[0].w // T2.X = stack[1].x // T2.Y = stack[1].y // T3.X = stack[1].z // T3.Y = stack[1].w // // StackWidth = 4: // T0.X = stack[0].x // T0.Y = stack[0].y // T0.Z = stack[0].z // T0.W = stack[0].w // T1.X = stack[1].x // T1.Y = stack[1].y // T1.Z = stack[1].z // T1.W = stack[1].w return 1; } /// \returns The number of registers allocated for \p FI. int AMDGPUFrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned Offset = 0; int UpperBound = FI == -1 ? MFI->getNumObjects() : FI; for (int i = MFI->getObjectIndexBegin(); i < UpperBound; ++i) { unsigned Size = MFI->getObjectSize(i); Offset += (Size / (getStackWidth(MF) * 4)); } return Offset; } const TargetFrameLowering::SpillSlot * AMDGPUFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { NumEntries = 0; return 0; } void AMDGPUFrameLowering::emitPrologue(MachineFunction &MF) const { } void AMDGPUFrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { } bool AMDGPUFrameLowering::hasFP(const MachineFunction &MF) const { return false; }