Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Target/R600/AMDGPUISelDAGToDAG.cpp @ 33:e4204d083e25
LLVM 3.5
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 14:32:10 +0900 |
parents | 95c75e76d11b |
children | 54457678186b |
line wrap: on
line source
//===-- AMDILISelDAGToDAG.cpp - A dag to dag inst selector for AMDIL ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //==-----------------------------------------------------------------------===// // /// \file /// \brief Defines an instruction selector for the AMDGPU target. // //===----------------------------------------------------------------------===// #include "AMDGPUInstrInfo.h" #include "AMDGPUISelLowering.h" // For AMDGPUISD #include "AMDGPURegisterInfo.h" #include "R600InstrInfo.h" #include "SIISelLowering.h" #include "llvm/ADT/ValueMap.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Support/Compiler.h" #include <list> #include <queue> using namespace llvm; //===----------------------------------------------------------------------===// // Instruction Selector Implementation //===----------------------------------------------------------------------===// namespace { /// AMDGPU specific code to select AMDGPU machine instructions for /// SelectionDAG operations. class AMDGPUDAGToDAGISel : public SelectionDAGISel { // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can // make the right decision when generating code for different targets. const AMDGPUSubtarget &Subtarget; public: AMDGPUDAGToDAGISel(TargetMachine &TM); virtual ~AMDGPUDAGToDAGISel(); SDNode *Select(SDNode *N); virtual const char *getPassName() const; virtual void PostprocessISelDAG(); private: inline SDValue getSmallIPtrImm(unsigned Imm); bool FoldOperand(SDValue &Src, SDValue &Sel, SDValue &Neg, SDValue &Abs, const R600InstrInfo *TII); bool FoldOperands(unsigned, const R600InstrInfo *, std::vector<SDValue> &); bool FoldDotOperands(unsigned, const R600InstrInfo *, std::vector<SDValue> &); // Complex pattern selectors bool SelectADDRParam(SDValue Addr, SDValue& R1, SDValue& R2); bool SelectADDR(SDValue N, SDValue &R1, SDValue &R2); bool SelectADDR64(SDValue N, SDValue &R1, SDValue &R2); SDValue SimplifyI24(SDValue &Op); bool SelectI24(SDValue Addr, SDValue &Op); bool SelectU24(SDValue Addr, SDValue &Op); static bool checkType(const Value *ptr, unsigned int addrspace); static bool isGlobalStore(const StoreSDNode *N); static bool isPrivateStore(const StoreSDNode *N); static bool isLocalStore(const StoreSDNode *N); static bool isRegionStore(const StoreSDNode *N); bool isCPLoad(const LoadSDNode *N) const; bool isConstantLoad(const LoadSDNode *N, int cbID) const; bool isGlobalLoad(const LoadSDNode *N) const; bool isParamLoad(const LoadSDNode *N) const; bool isPrivateLoad(const LoadSDNode *N) const; bool isLocalLoad(const LoadSDNode *N) const; bool isRegionLoad(const LoadSDNode *N) const; const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, SDValue& Offset); bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); // Include the pieces autogenerated from the target description. #include "AMDGPUGenDAGISel.inc" }; } // end anonymous namespace /// \brief This pass converts a legalized DAG into a AMDGPU-specific // DAG, ready for instruction scheduling. FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM ) { return new AMDGPUDAGToDAGISel(TM); } AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(TM), Subtarget(TM.getSubtarget<AMDGPUSubtarget>()) { } AMDGPUDAGToDAGISel::~AMDGPUDAGToDAGISel() { } /// \brief Determine the register class for \p OpNo /// \returns The register class of the virtual register that will be used for /// the given operand number \OpNo or NULL if the register class cannot be /// determined. const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, unsigned OpNo) const { if (!N->isMachineOpcode()) { return NULL; } switch (N->getMachineOpcode()) { default: { const MCInstrDesc &Desc = TM.getInstrInfo()->get(N->getMachineOpcode()); unsigned OpIdx = Desc.getNumDefs() + OpNo; if (OpIdx >= Desc.getNumOperands()) return NULL; int RegClass = Desc.OpInfo[OpIdx].RegClass; if (RegClass == -1) { return NULL; } return TM.getRegisterInfo()->getRegClass(RegClass); } case AMDGPU::REG_SEQUENCE: { const TargetRegisterClass *SuperRC = TM.getRegisterInfo()->getRegClass( cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()); unsigned SubRegIdx = dyn_cast<ConstantSDNode>(N->getOperand(OpNo + 1))->getZExtValue(); return TM.getRegisterInfo()->getSubClassWithSubReg(SuperRC, SubRegIdx); } } } SDValue AMDGPUDAGToDAGISel::getSmallIPtrImm(unsigned int Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } bool AMDGPUDAGToDAGISel::SelectADDRParam( SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::FrameIndex) { if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); R2 = CurDAG->getTargetConstant(0, MVT::i32); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i32); } } else if (Addr.getOpcode() == ISD::ADD) { R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i32); } return true; } bool AMDGPUDAGToDAGISel::SelectADDR(SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) { return false; } return SelectADDRParam(Addr, R1, R2); } bool AMDGPUDAGToDAGISel::SelectADDR64(SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) { return false; } if (Addr.getOpcode() == ISD::FrameIndex) { if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i64); R2 = CurDAG->getTargetConstant(0, MVT::i64); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i64); } } else if (Addr.getOpcode() == ISD::ADD) { R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i64); } return true; } SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { N->setNodeId(-1); return NULL; // Already selected. } switch (Opc) { default: break; case ISD::BUILD_VECTOR: { unsigned RegClassID; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); const AMDGPURegisterInfo *TRI = static_cast<const AMDGPURegisterInfo*>(TM.getRegisterInfo()); const SIRegisterInfo *SIRI = static_cast<const SIRegisterInfo*>(TM.getRegisterInfo()); EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); assert(VT.getVectorElementType().bitsEq(MVT::i32)); if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { bool UseVReg = true; for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); U != E; ++U) { if (!U->isMachineOpcode()) { continue; } const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); if (!RC) { continue; } if (SIRI->isSGPRClass(RC)) { UseVReg = false; } } switch(NumVectorElts) { case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID : AMDGPU::SReg_32RegClassID; break; case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID : AMDGPU::SReg_64RegClassID; break; case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID : AMDGPU::SReg_128RegClassID; break; case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID : AMDGPU::SReg_256RegClassID; break; case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID : AMDGPU::SReg_512RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } else { // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. switch(NumVectorElts) { case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break; case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32); if (NumVectorElts == 1) { return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, VT.getVectorElementType(), N->getOperand(0), RegClass); } assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not " "supported yet"); // 16 = Max Num Vector Elements // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) // 1 = Vector Register Class SDValue RegSeqArgs[16 * 2 + 1]; RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32); bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { // XXX: Why is this here? if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[1 + (2 * i)] = N->getOperand(i); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } case AMDGPUISD::REGISTER_LOAD: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) break; SDValue Addr, Offset; SelectADDRIndirect(N->getOperand(1), Addr, Offset); const SDValue Ops[] = { Addr, Offset, CurDAG->getTargetConstant(0, MVT::i32), N->getOperand(0), }; return CurDAG->getMachineNode(AMDGPU::SI_RegisterLoad, SDLoc(N), CurDAG->getVTList(MVT::i32, MVT::i64, MVT::Other), Ops); } case AMDGPUISD::REGISTER_STORE: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) break; SDValue Addr, Offset; SelectADDRIndirect(N->getOperand(2), Addr, Offset); const SDValue Ops[] = { N->getOperand(1), Addr, Offset, CurDAG->getTargetConstant(0, MVT::i32), N->getOperand(0), }; return CurDAG->getMachineNode(AMDGPU::SI_RegisterStorePseudo, SDLoc(N), CurDAG->getVTList(MVT::Other), Ops); } } return SelectCode(N); } bool AMDGPUDAGToDAGISel::checkType(const Value *ptr, unsigned int addrspace) { if (!ptr) { return false; } Type *ptrType = ptr->getType(); return dyn_cast<PointerType>(ptrType)->getAddressSpace() == addrspace; } bool AMDGPUDAGToDAGISel::isGlobalStore(const StoreSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isPrivateStore(const StoreSDNode *N) { return (!checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS)); } bool AMDGPUDAGToDAGISel::isLocalStore(const StoreSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isRegionStore(const StoreSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS); } bool AMDGPUDAGToDAGISel::isConstantLoad(const LoadSDNode *N, int CbId) const { if (CbId == -1) { return checkType(N->getSrcValue(), AMDGPUAS::CONSTANT_ADDRESS); } return checkType(N->getSrcValue(), AMDGPUAS::CONSTANT_BUFFER_0 + CbId); } bool AMDGPUDAGToDAGISel::isGlobalLoad(const LoadSDNode *N) const { if (N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS || N->getMemoryVT().bitsLT(MVT::i32)) { return true; } } return checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isParamLoad(const LoadSDNode *N) const { return checkType(N->getSrcValue(), AMDGPUAS::PARAM_I_ADDRESS); } bool AMDGPUDAGToDAGISel::isLocalLoad(const LoadSDNode *N) const { return checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isRegionLoad(const LoadSDNode *N) const { return checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS); } bool AMDGPUDAGToDAGISel::isCPLoad(const LoadSDNode *N) const { MachineMemOperand *MMO = N->getMemOperand(); if (checkType(N->getSrcValue(), AMDGPUAS::PRIVATE_ADDRESS)) { if (MMO) { const Value *V = MMO->getValue(); const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V); if (PSV && PSV == PseudoSourceValue::getConstantPool()) { return true; } } } return false; } bool AMDGPUDAGToDAGISel::isPrivateLoad(const LoadSDNode *N) const { if (checkType(N->getSrcValue(), AMDGPUAS::PRIVATE_ADDRESS)) { // Check to make sure we are not a constant pool load or a constant load // that is marked as a private load if (isCPLoad(N) || isConstantLoad(N, -1)) { return false; } } if (!checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::CONSTANT_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::PARAM_D_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::PARAM_I_ADDRESS)) { return true; } return false; } const char *AMDGPUDAGToDAGISel::getPassName() const { return "AMDGPU DAG->DAG Pattern Instruction Selection"; } #ifdef DEBUGTMP #undef INT64_C #endif #undef DEBUGTMP //===----------------------------------------------------------------------===// // Complex Patterns //===----------------------------------------------------------------------===// bool AMDGPUDAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr) { if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, true); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, SDValue& BaseReg, SDValue &Offset) { if (!dyn_cast<ConstantSDNode>(Addr)) { BaseReg = Addr; Offset = CurDAG->getIntPtrConstant(0, true); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode * IMMOffset; if (Addr.getOpcode() == ISD::ADD && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) && isInt<16>(IMMOffset->getZExtValue())) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32); return true; // If the pointer address is constant, we can move it to the offset field. } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) && isInt<16>(IMMOffset->getZExtValue())) { Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(CurDAG->getEntryNode()), AMDGPU::ZERO, MVT::i32); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32); return true; } // Default case, no offset Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode *C; if ((C = dyn_cast<ConstantSDNode>(Addr))) { Base = CurDAG->getRegister(AMDGPU::INDIRECT_BASE_ADDR, MVT::i32); Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); } else { Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); } return true; } SDValue AMDGPUDAGToDAGISel::SimplifyI24(SDValue &Op) { APInt Demanded = APInt(32, 0x00FFFFFF); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true); const TargetLowering *TLI = getTargetLowering(); if (TLI->SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) { CurDAG->ReplaceAllUsesWith(Op, TLO.New); CurDAG->RepositionNode(Op.getNode(), TLO.New.getNode()); return SimplifyI24(TLO.New); } else { return Op; } } bool AMDGPUDAGToDAGISel::SelectI24(SDValue Op, SDValue &I24) { assert(Op.getValueType() == MVT::i32); if (CurDAG->ComputeNumSignBits(Op) == 9) { I24 = SimplifyI24(Op); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectU24(SDValue Op, SDValue &U24) { APInt KnownZero; APInt KnownOne; CurDAG->ComputeMaskedBits(Op, KnownZero, KnownOne); assert (Op.getValueType() == MVT::i32); // ANY_EXTEND and EXTLOAD operations can only be done on types smaller than // i32. These smaller types are legal to use with the i24 instructions. if ((KnownZero & APInt(KnownZero.getBitWidth(), 0xFF000000)) == 0xFF000000 || Op.getOpcode() == ISD::ANY_EXTEND || ISD::isEXTLoad(Op.getNode())) { U24 = SimplifyI24(Op); return true; } return false; } void AMDGPUDAGToDAGISel::PostprocessISelDAG() { const AMDGPUTargetLowering& Lowering = (*(const AMDGPUTargetLowering*)getTargetLowering()); bool IsModified = false; do { IsModified = false; // Go over all selected nodes and try to fold them a bit more for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ++I) { SDNode *Node = I; MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I); if (!MachineNode) continue; SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); if (ResNode != Node) { ReplaceUses(Node, ResNode); IsModified = true; } } CurDAG->RemoveDeadNodes(); } while (IsModified); }