
1

日本ソフトウェア科学会第 27 回大会 (2010 年度) 講演論文集

Dependent Polymorphism

(Preliminary Report)

Makoto Hamana

We report that an algebraic semantics of dependent types induces a kind of polymorphism, which we call

dependent polymorphism. This might be a principle of dependently-typed programming.

1 Introduction

Dependently-typed programming has already

been available to all programmers. Agda [8], Epi-

gram [6], Coq with program tactic [11], and con-

temporary Haskell with GADTs [10] have offered a

variety of new programming techniques using de-

pendent types [9]. But it has not been clear what

good principles of dependently-type programming

are.

In this note, we show a principle of dependently-

type programming derived from semantics. We

firstly give an algebraic semantics of inductive fam-

ilies based on Fiore’s semantics of dependently-

sorted abstract syntax [2]. Then we show that it

gives a kind of polymorphism on programs, which

we call dependent polymorphism. This might be

a useful principle of dependently-typed program-

ming.

2 Another Semantics of Inductive

Families

Inductive families are a principal feature of

dependently-typed programming. They are an in-

dexed version of inductive datatypes.

The most basic inductive families are the usual

inductive datatypes. For example, the following is

Dependent Polymorphism

Makoto Hamana, 群馬大学 工学研究科, Department of

Computer Science, Gunma University.

the definition of inductive type of natural numbers

using Agda’s notation.

data Nat : Set where

zero : Nat

suc : Nat → Nat

This notation is also the same as that for GADTs

(Generalised Algebraic Datatypes) in Haskell.

Truly inductive families are given by indexed

types. For example, we can define an inductive

family Vec of length-indexed lists (called vectors)

as a type indexed by Nat :

data Vec : Nat → Set where

nil : Vec Zero

cons : (n : Nat) × (b : B) × Vec n → Vec (suc n)

Initial algebra semantics of inductive families,

such as Nat and Vec, has been known by depen-

dent polynomial functors [7] [3] or indexed functors

[1].

In this section, we give yet another algebraic

semantics based on Fiore’s algebraic semantics of

dependently-sorted abstract syntax, which is now

tailored for inductive families. Fiore’s semantics is

different from any other existing approach, and is

more natural semantics of inductive families than

existing ones from the viewpoint of dependently-

typed programming.

2. 1 Sorts

Let S be a directed acyclic graph of sorts express-

ing dependency between sorts. Then it generates

a free category Ŝ, called dependency category . We

2 日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集

abuse to denote Ŝ as S. Note that S forms a simple

category [5]. A sort in S is typically denoted by

S, S1, . . . , D, etc. We call a map d : S → S′ in S
(sort) dependency .

Each sort D ∈ S is used for the name of an induc-

tive family, so we also call D an inductive family.

A specification of an inductive family D ∈ S is of

the form

D : (x1 : S1, . . . , xk : Sk) → sort

where (x1 : S1, . . . , xk : Sk) is a telescope (or, con-

text) – a sequence of declarations xi : Si where later

types may depend on earlier variables. The spec-

ification must be consistent with sort dependency

in S, i.e. for each Si, there must uniquely exist a

dependency d : D → Si in S. This is read as “D

depends on Si”.

D

ª¡
¡d1 @

@
dk

R
S1 · · · Si

s- Sj · · · Sk

2. 2 Signatures

A signature Σ is a finite set of specifications of

constructors. A specification of constructor of an

inductive family D is of the form

c : (x1 : S1, . . . , xk : Sk) → D(t1, . . . , tl)

where each ti is a well-formed term under the con-

text x1 : S1, . . . , xk : Sk. For that specification, we

may call (x1 : S1, . . . , xk : Sk) source sorts, and

D(t1, . . . , tl) a target sort .

Convension 2.1 We may call a sort-with-parameters

D(t1, . . . , tl) simply a sort. We typically use let-

ters S, S1, . . . , D in italic to range over sort-with-

parameters, and letters S, S1, . . . , D in san-selif to

range over the corresponding sorts.

2. 3 Terms

Well-formed terms are derived by the following

rules of term judgments:
x : S ∈ ∆

∆ ` x : S

c : (x1 : S1, . . . , xk : Sk) → D ∈ Σ

∆ ` t1 : S1
· · ·
∆ ` tn : Sn

∆ ` c(t1, . . . , tn) : D

Here ∆ is a telescope.

2. 4 Sort Definitions

Any signature Σ for S is partitioned into |S|-
parts, where each partition defines an inductive

family D in Σ. That is, a partition for a sort D is a

set of specifications having the same target sort D

(with possibly different parameters):

c1 : ∆1 → D(t11, . . . , t
1
l)

· · ·
cn : ∆n → D(tn

1 , . . . , tn
l)

We denote this partition for the sort D by ΣD and

call the signature for D.

Given a signature Σ, we can construct a sequence

of partitions of signature

ΣD1 , ΣD2 , . . . ΣDn

that satisfies the following ordering condition:

when there exists d : Di ← Dj in S, always i < j.

This means that a later signature depends on an

earlier signature. We call the sequence of sorts ap-

pearing in the above signatures

D1, . . . , Dn

a sort dependency sequence. Now, a later sort de-

pends on an earlier sort. For a sort Di in a sort

dependency sequence, the sort Di−1 is called the

predecessor of Di.

2. 5 Overview

Let D1, D2, . . . Dn be a sort dependency se-

quence. Our strategy to define the notion of models

for sorts is by using course-of-value induction on n.

A Di-model A is a presheaf in SetS equipped with

the interpretation cA for each constructor c of the

target sort Di. We will later define the structure of

Di-model more precisely with

• the category Di-Mod of Di-models

equipped with

• a forgetful functor

(−) : Di-Mod - Di−1-Mod.

for i = 2, . . . , n.

The base case is for the models of the most ba-

sic sort D1. By definition of dependency category

S, the sort D1 must be non-parametric, i.e. the

specification of D1 is

D1 : () → sort

and its signature ΣD1 is of the form

c1 : ∆1 → D1 · · · cn : ∆n → D1

日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集 3

where each ∆i is of the form (x1 : D1, . . . , xk : D1),

i.e. every target is always the sort D1. This means

that the sort D1 must be the usual inductive type.

The signature ΣD1 gives rise the signature functor

ΣD1 : SetS → SetS by

(ΣD1A)D1 =
a

i=1,...,n

A
|∆i|
D1

(ΣD1A)S = 0 (S 6= D1)

A ΣD1 -algebra is a pair (A, α : ΣD1A → A). A

D1-model is defined to be a ΣD1 -algebra. This gives

the meaning of each constructor of the target sort

D1. Then we define the category D1-Mod as the

category of all D1-models and homomorphisms.

2. 6 The category of models

Suppose Dk, Dk−1, . . . , D1, D to be a dependency

sort sequence. In general, for a D-model A, we get

the corresponding models by applying the forgetful

functor (−):

A ∈ D1-Mod, A ∈ D2-Mod, . . .

(A)
k
∈ Dk-Mod.

where the last one denotes the k-times application

of the forgetful functor.

This means that when constructing a D-model

A, we can always track any previously constructed

model that D depends on. We write (A)
i
as (A)

Di
.

Each (A)
Di

∈ Di-Mod is basically for giving the

meaning of c : ∆ → Di.

2. 7 Interpretation of Source Sorts and

Terms

Given a well-typed term ∆ ` τ : S, its interpre-

tation in a S-model A is a function

[[∆ ` τ : S]]A : [[∆]]A → AS.

The interpretation of term judgments is defined by

[[∆ ` x : S]]A = πx

[[∆ ` c(τ1, . . . , τn) : S]]A =

cA ◦ 〈[[∆ ` τ1 : S1]](A)
S1

, . . . , [[∆ ` τn : Sn]](A)
Sn

〉

where cA is the operation of S in the S-model A.

Given a telescope ∆ = (x1 : S1, . . . , xn : Sn), its

interpretation in a S-model A is a set

[[∆]]A = {(a1, . . . , an) ∈ AS1 × · · · × ASn |
Si = Si(. . . , τ , . . .), τ : S,

2 ≤ i ≤ n, d : Si → S,

AS 3 Ad(ai) = [[∆i−1 ` τ : S]]A(a1, . . . , ai−1)}
where ∆i−1 = (x1 :S1, . . . , xi−1 :Si−1).

Note that intuitively, ai : Si(. . . , τ , . . .).

2. 8 Signature Functor

Let D be a sort and D′ its predecessor. Let ΣD

and ΣD′
be signatures. We define the signature

functor for the sort D

ΣD : D′-Mod - SetS,

which takes a D′-model A (with underlying

presheaf A ∈ SetS) and a sort in S and returns

a set as follows:

(ΣDA)D = [[∆1]]A + · · · + [[∆n]]A

(ΣDA)di = [[[∆1 ` t1i : Si]]A, . . . , [[∆n ` tn
i : Si]]A]

: (ΣDA)D → (ΣDA)Si

(ΣDA)idD = id[[∆1]]A+···+[[∆n]]A

(ΣDA)Si = ASi

(ΣDA)idSi
= idASi

(ΣDA)s = As

where

• di : D → Si, s : Si → Sj in S are non-identities

(0 ≤ i ≤ l),

• D has the specification

c1 : ∆1 → D(t11, . . . , t
1
l)

· · ·
cn : ∆n → D(tn

1 , . . . , tn
l).

If S ∈ S is unreachable from D, we set

(ΣA)S = 0

(ΣA)d = ! : 0 → AS′

(ΣA)idS = id0

where d : S → S′ in S is a non-identity.

2. 9 Algebras and Models

Let D be a sort and D′ its predecessor. A ΣD-

algebra is a pair (A, α):

• a D′-model A with

• underlying presheaf A ∈ SetS, and

• a map αD = [cA]c∈ΣD : (ΣDA)D → AD in

4 日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集

SetS, called algebra structure, where cA is an

operation

cA : [[∆]]A → AD

defined for each c : ∆ → D ∈ ΣD.

A D-model is a ΣD-algebra A = (A, α) such that

αS = idAS

for all sort S (6= D) which is reachable from D.

Obviously, ΣD-algebras and homomorphisms, D-

models and homomorphisms form categories ΣD

-Alg, D -Mod, respectively.

3 Dependent Polymorphism

Using the semantics in the previous section,

we observe an interesting phenomenon on a

dependently-typed function.

We consider the inductive families Nat and Vec

defined in Introduction. We suppose two sorts N

and V corresponding to Nat and Vec. Since Vec

depends on Nat , we set the dependency category S
as

N ¾len
V

where len is the sort dependency and identities are

ommited. This is read as that V depends on N.

Notice that the name len of the sort dependency is

not important, and len is merely an arrow (not a

function).

In the category SetS, we can model Vec and Nat .

We consider a term model T ∈ SetS:

TN = {zero} ∪ {suc(n) | n ∈ TN}
TV = {nil} ∪ {cons(n, b, y) | n ∈ TN, b ∈ TB , y ∈ TV,

T (len)(y) = n}
which T gives a V-model.

By functoriality, T : S → Set maps the sort de-

pendency len to a function T (len)

N ¾ len
V in S

TN
¾

T (len)

T
?

TV in Set

defined by

T (len)(nil) = 0

T (len)(cons(n, a, y)) = suc(n)

i.e., the length function on vectors. This functori-

ality is automatically imposed by the conditions of

semantics described in the previous section.

Consider the standard append function ++ on

vectors and the addition on natural numbers.

++ : V ec(m) × V ec(n) → V ec(m + n)

nil ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

+ : Nat → Nat

zero + y = y

suc(n) + y = suc(n + y)

Then the following diagram obviously commutes.

V TV × TV
++ - TV

N

len

?
TN × TN

T len × T len

?

+
- TN

T

?

len

in S in Set

One way of understanding this diagram is to re-

gard it as the naturality square of a certain natural

transformation ⊕ : T → T .

How can we define “⊕”? A candidate is to

schematically define it as

z ⊕ y = y

c(n) ⊕ y = c(n ⊕ y)

This means that ⊕ is instantiated to ++ at the

component V by

• interpreting z as nil, and

• interpreting c as (x :),

and is instantiated to + at the component N by

• interpreting z as zero, and

• interpreting c as suc.

Then the above naturality square is seen as ex-

pressing polymorphism of the “schematic” function

⊕. This polymorphism is restricted to the depen-

dency len, hence we call it dependent polymor-

phism.

This phenomena of dependent polymorphism is

typical for an inductive family indexed by some

“shape” of datatype. In the above case, natural

numbers are seen as the shapes of vectors. There

are also many other examples of such shapely-

indexed data types. This might be relevant to

Barry Jay’s shapely types and polymorphism [4].

日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集 5

Acknowledgement. I am grateful to Marcelo

Fiore for fruitful discussions on the semantics of

dependently-sorted abstract syntax.

参 考 文 献

[1] Altenkirch, T. and Morris, P.: Indexed Contain-

ers, LICS, 2009, pp. 277–285.

[2] Fiore, M. P.: Second-Order and Dependently-

Sorted Abstract Syntax, LICS, 2008, pp. 57–68.

[3] Gambino, N. and Hyland, M.: Wellfounded

Trees and Dependent Polynomial Functors, TYPES,

2003, pp. 210–225.

[4] Jay, C. B. and Cockett, J.: Shapely Types and

Shape Polymorphism, ESOP, 1994, pp. 302–316.

[5] Makkai, M.: First-order logic with dependent

sorts, with applications to category theory, 1997.

Preprint.

[6] McBride, C. and McKinna, J.: The view

from the left, Journal of Functional Programming,

Vol. 14, No. 1(2004), pp. 69–111.

[7] Moerdijk, I. and Palmgren, E.: Wellfounded

trees in categories, Annals of Pure and Applied

Logic, Vol. 104(2000), pp. 189–218.

[8] Norell, U.: Towards a practical programming

language based on dependent type theory, PhD The-

sis, Chalmers University of Technology, 2007.

[9] Oury, N. and Swierstra, W.: The power of Pi,

Proc. of ICFP’08, 2008, pp. 39–50.

[10] Peyton Jones, S., Vytiniotis, D., Weirich, S., and

Washburn, G.: Simple unification-based type infer-

ence for GADTs, Proc. of ICFP ’06, 2006, pp. 50–

61.

[11] Sozeau, M.: Program-ing Finger Trees in Coq,

ICFP’07, 2007, pp. 13–24.

