Mercurial > hg > Papers > 2015 > atton-icfp
changeset 5:87bb6169c80d default tip
Writing ...
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 27 Feb 2015 17:07:58 +0900 |
parents | ecebdd7bfa48 |
children | |
files | delta.tex |
diffstat | 1 files changed, 65 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/delta.tex Thu Feb 26 17:57:31 2015 +0900 +++ b/delta.tex Fri Feb 27 17:07:58 2015 +0900 @@ -72,33 +72,85 @@ Delta Monad represents modifications by accumulates all versions of a program. Accumulated modifications can computes by meta computation. In this paper, We propose meta computation execute a program includes modifications simultaneously on Delta. -Additionally, Delta Monad can be used with other Monads for more computations of modifications. \section{Programs and Monads} Programs notated typed lambda calculus constructed values and abstractions. Abstractions maps value to value. +Abstraction f applies to x notated $ f x $. Every lambda term has a type. Value x has type A notated $ x : A $. Abstraction f has a argument of type A and return value of type B notated $ f : A \rightarrow B $. -\begin{eqnarray} +\begin{eqnarray*} x : A \\ f : A \rightarrow B \\ - f x : B -\end{eqnarray} + f x : B \\ +\end{eqnarray*} + +Type matched abstractions can be composed by operator ';'. +Order of composition are commutative. + +\begin{eqnarray*} + f : A \rightarrow B \\ + g : B \rightarrow C \\ + f;g : A \rightarrow C \\ + \\ + h : C \rightarrow D \\ + (f;g);h = f;(g;h) +\end{eqnarray*} + +Abstractions can be extended using Monad. + +Monad is $ triple (T, \eta, \mu) $ satisfies laws(Figure) % TODO :commutative diagram +Various meta computations represents by definition of triple. +Monad has another description Kleisli Triple $ (T, \eta, \_^{*}) $. +Kleisli triple are following equations hold: + +\begin{itemize} + \item $ \eta^{*}_A = id_{T A} $ + \item $ \eta;f^{*} = f \mbox{ for } f : A \rightarrow T B $ + \item $ f^{*} ; g^{*} = (f; g^{*})^{*} \mbox{ for } f : A \rightarrow T B \mbox{ and } g : B \rightarrow T C $ +\end{itemize} + +Kleisli Triple can build from Monad ($ (T, \eta, \mu) $). + +For Example, definition of diverging computation using Monad are shown. -Execution of a program is application of abstraction. -Some computations can not be notated abstraction like Input/Output are meta computation. -Meta computations are computations for implements computations. +\begin{itemize} + \item $ T A = A_{\bot} (= A + \{\bot\}) $ + \item $ \eta_A $ is the inclusion of A into $ A_{\bot} $ + \item if $ f : A \rightarrow T B $, then $ f^{*} (\bot) = \bot $ and $ f^{*}(a) = f (a) $ when $ a $ has type A. +\end{itemize} + +\section{Modification using Monad} + +\begin{equation*} + T A = A_0 \times A_1 \times \dots \times A_n +\end{equation*} + +\begin{eqnarray*} + x : A \\ + x^{*} : T A \\ + x^{*} : A_0 \times A_1 \times \dots \times A_n \\ + \\ + f : A \rightarrow B \\ + f^{*} : A \rightarrow T B \\ + f^{*} : (A_0 \rightarrow B_0) \times (A_1 \rightarrow B_1) \times \dots \times (A_n \rightarrow B_n) +\end{eqnarray*} + +\begin{eqnarray*} + f^{*} : A \rightarrow T B \\ + f^{*} = f_0 \times f_1 \times \dots f_n \\ + \\ + g^{*} : B \rightarrow T C \\ + g^{*} = g_0 \times g_1 \times \dots g_n \\ + \\ + g^{*} \circ f^{*} : A \rightarrow T C \\ + g^{*} \circ f^{*} = (g_0 \circ f_0) \times (g_1 \circ f_1) \times \dots \times (g_n \circ f_n) +\end{eqnarray*} -\section{Definition of Delta Monad} -\section{An example of program includes modification} -\section{DeltaM combinator with other Monads} -\section{An example of program includes modification with traces} -\section{Conclusion and future works} - \appendix \section{Appendix Title}