
Categorical Formalization of Program Modification
Yasutaka HIGA

University of the Ryukyus
Email: atton@cr.ie.u-ryukyu.ac.jp

Shinji KONO
University of the Ryukyus

Email: kono@ie.u-ryukyu.ac.jp

Abstract—We propsed programming units called code seg-
ments and data segments. These are parts of code and data. It
is designed to be work with meta compution. To represent meta
compuation, Monad is used. As an example, we define multi
versions of programs as a Monad.

I. CONTINUATION BASED C

We proposed units of program named code segment and data
segment. Code segment is a unit of calculation which has no
state. Data segment is a set of typed data. Code segments are
connected to data segments with a context, which is a meta
data segment. After an execution of a code segment and its
context, next code segments (Continuation) is executed.

We had developed a programming language “Continuation
based C“ [1], Hear after we call it CbC, which supports code
segments. CbC is compatible with C language and it has
continuation as a goto statement. Actually, goto statements
are tail call of another a code segment and a code segment
is a C function. Tail call elimination is forced by our LLVM
based compiler. We are currently designing data segments part
on CbC.

Code segments and data segments are low level enough to
represent computation details, and it is architecture indepen-
dent. It can be used as an architecture independent assembler.

In this paper, meta computation of CbC is discussed. We
introduce meta computation as a Monad. As an example,
versioning of functions are represented as a Monad. Reliability
of a program strongly depends on a method of modification.
Program modifications are defined as Monad which contains
previous versions of the functions. In this way, program
modifications are represented as a meta computation. For
example, We can execute multi versions simultaneously using
this Monad.

II. META COMPUTATION AND A MONAD

Meta computations in CbC are formalized by Monad. At
first, we review meta computation and Monad.

Monad is a notion of Category Theory.
A category contains arrows and objects. Arrow in a category

is function. Objects in a category is types. A function has its
input type and its output type, so an arrow in a category has
domain object and codomain object. Composition of arrows
and its association laws are provided.

If you have a function f which domain is A and codomain
is B, f :: A → B Then, there are meta function f∗

which codomain is T B. In this way, normal computation and
meta computation as one to one correspondence[2]. Various

computations such as partiality, nondeterminism, side-effects,
exceptions and continuations are represented as Monads.

We use typed lambda calculus as a representation of func-
tion and Haskell syntax is used. Programs notated typed
lambda calculus constructed values and functions. Value x has
a type A is notated as x :: A. An application of a function f
to value x is notated as fx.

x :: A

f :: A → B

fx :: B

Function composition operator is “.“ . As usual order of
composition are associative.

f :: A → B

g :: B → C

g.f :: A → C

h :: C → D

(h.g).f = h.(g.f) :: A → D

Sum type is introduced using Haskel syntax(Table I).

1 data Delta a = Mono a
2 | Delta a (Delta a)

TABLE I
DEFINITION OF DATA TYPE “DELTA“ IN HASKELL

This is data type definition of sum type delta which has
type variable a. Mono a and Delta a is a constructor of
data type Delta, which maps object a in a category to object
Delta a in the same category. Functor is a mapping from
category A to B, which has two mappings, one for object
mapping and one for arrow mapping(Table II).

1 deltaFmap :: (a -> b) -> Delta a -> Delta b
2 deltaFmap f (Mono x) = Mono (f x)
3 deltaFmap f (Delta x d) = Delta (f x) (deltaFmap f d

)

TABLE II
ARROW MAPPING FOR DATA TYPE “DELTA“



Arrow mapping in a functor satisfies identity law and
distribution law. Data type can be accessed by pattern match-
ing(Table III).

1 headDelta :: Delta a -> a
2 headDelta (Mono x) = x
3 headDelta (Delta x d) = x

TABLE III
DEFINE FUNCTION TO DELTA USING PATTERN MATCHING

This is a natural transformation from functor Delta to
identity functor. Natural transformation is a set of arrow
between two functors, which satisfies commutative law.

Monad in category A is triple(T, η, µ). T is a functor from
A to A. η is a natural transformation from identity functor to
T. µ is a natural transformation from TT to T. TT is a nested
data structure of T.

Monad also satisfies to laws below:
• association law : µA.µTA = µA.TµA

• unity law : µA.ηTA = µA.TηA = idTA

Various meta computations represents by definition of triple.
For each function f :: A → B , there is a meta computation
f∗ :: A → TB. Combination of f∗ g∗ h∗ is defined as follows:

(h∗.g∗).f∗ = h∗.(g∗.f∗)

Association law of f∗ is derived from Monad laws. In this
way, for each Monad there is a new category of f∗ which is
a well known Kleisli Category.

Normal function f has a meta function f∗ which returns
Monad T.

III. MODIFICATION OF PROGRAM USING MONAD

A program is set of function. Modifications of a program are
set of mapping from old version of functions to new functions.
These versions may have different types or same types and
each version have correct type matchings.

In case of modification with no type changes, Delta Monad
is defined as a program modification as follows:

1 data Delta a = Mono a
2 | Delta a (Delta a) deriving Show
3
4 headDelta :: Delta a -> a
5 headDelta (Mono x) = x
6 headDelta (Delta x d) = x
7
8 tailDelta :: Delta a -> Delta a
9 tailDelta (Mono x) = Mono x

10 tailDelta (Delta d ds) = ds
11
12 instance Monad Delta where
13 return x = Mono x
14 (Mono x) >>= f = f x
15 (Delta x d) >>= f = Delta (headDelta (f x))
16 (d >>= (tailDelta . f))

TABLE IV
DEFINITION OF DELTA MONAD IN HASKELL

Modifications of values are stored as a list like structure.
Delta contains two constructor Mono and Delta, Mono
represents first version, Delta represents modification. Infix

operator >>= handles meta functions has typed A → DeltaB
recursive applies to each original versions. This definition
represents simple modification only monotonic increase ver-
sioning (exclude branching and merging) and program has
consistent type in all versions. We proved satisfying Monad
laws by proof assistant language Agda[3]. This monad can be
combined with other Monad such as Writer.

IV. EXAMPLE

We show an example using Delta Monad(Table V). A
program contains only a function which calculate integer. In
first version, function f is adding 2 to argument. In second
version, modified function f multiplying 3 to argument. We
can define f’ as a meta function contains both version. Meta
function f’ outputs two results for value 100.

1 -- functiion version one. add 2 to integer.
2 f :: Int -> Int
3 f x = x + 2
4
5 -- function version two. multiply 3 to integer.
6 f2 :: Int -> Int
7 f2 x = x * 3
8
9 -- meta function contains two version.

10 f’ :: Int -> Delta Int
11 f’ x = Delta (x + 2) (Mono (x * 3))
12
13 -- We can execute multi versions simultaneously.
14 -- *Main> Mono 100 >>= f’
15 -- Delta 102 (Mono 300)

TABLE V
AN EXAMPLE USING DELTA

V. CONCLUSION AND FUTURE WORKS

Program modification is defined as a Monad. Modifications
as meta computations makes various checking methods possi-
ble. These checking methods are also some kind of Monads. In
this way, we can provide program development tool based on
categorical formulation. We are implementing various methods
in CbC. In this paper, we only handles modification on the
same types. Formulation of Modifications on the different
types will be proposed in future. Only linear version structure
handled here. We hope that more complex structure such as
branching or merging can be handle in the same way.

REFERENCES

[1] S. Kono and K. Yogi, “Implementing continuation based language
in GCC,” CoRR, vol. abs/1109.4048, 2011. [Online]. Available:
http://arxiv.org/abs/1109.4048

[2] E. Moggi, “Notions of computation and monads,” Inf. Comput.,
vol. 93, no. 1, pp. 55–92, Jul. 1991. [Online]. Available: http:
//dx.doi.org/10.1016/0890-5401(91)90052-4

[3] “The agda wiki,” http://wiki.portal.chalmers.se/agda/pmwiki.php, ac-
cessed: 2015/04/19(Sun).

[4] J. m. Lambek and P. J. Scott, Introduction to higher order categorical
logic, ser. Cambridge studies in advanced mathematics. Cambridge,
New York (N. Y.), Melbourne: Cambridge University Press, 1986.
[Online]. Available: http://opac.inria.fr/record=b1092711

[5] M. Barr and C. Wells, Category Theory for Computing Science, ser.
International Series in Computer Science. Prentice-Hall, 1990, second
edition, 1995.

[6] J.-Y. Girard, P. Taylor, and Y. Lafont, Proofs and Types. New York, NY,
USA: Cambridge University Press, 1989.

[7] M. P. Jones and L. Duponcheel, “Composing monads,” Yale University,
Research Report YALEU/DCS/RR-1004, December 1993.


