view src/nat_add_sym.agda @ 42:4cc65012412f

Add proofs of functor-laws on delta
author Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
date Fri, 13 Feb 2015 17:13:23 +0900
parents e30a02baba55
children
line wrap: on
line source

open import Relation.Binary.PropositionalEquality
open import nat
open import nat_add
open ≡-Reasoning

module nat_add_sym where

addSym : (n m : Nat) -> n + m ≡ m + n
addSym O       O   = refl
addSym O    (S m)  = cong S (addSym O m)
addSym (S n)   O   = cong S (addSym n O)
addSym (S n) (S m) = {!!}