delta-eta-is-nt : {l : Level} {A B : Set l} -> {n : Nat} (f : A -> B) -> (x : A) -> (delta-eta {n = n} ∙ f) x ≡ delta-fmap f (delta-eta x) delta-eta-is-nt {n = O} f x = refl delta-eta-is-nt {n = S n} f x = begin (delta-eta ∙ f) x ≡⟨ refl ⟩ delta-eta (f x) ≡⟨ refl ⟩ delta (f x) (delta-eta (f x)) ≡⟨ cong (\de -> delta (f x) de) (delta-eta-is-nt f x) ⟩ delta (f x) (delta-fmap f (delta-eta x)) ≡⟨ refl ⟩ delta-fmap f (delta x (delta-eta x)) ≡⟨ refl ⟩ delta-fmap f (delta-eta x) ∎