Mercurial > hg > Papers > 2015 > kaito-lola
view presentation/presen.html @ 11:4cff1ef8fbf6
fix
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Jul 2015 17:25:27 +0900 |
parents | 81195c2fcf4a |
children | 40be058f9df8 |
line wrap: on
line source
<!DOCTYPE html> <html> <head> <meta charset='utf-8'> <title>Presen</title> <!-- style sheet links --> <link rel="stylesheet/less" href="themes/blank/projection.css.less" media="screen,projection"> <link rel="stylesheet/less" href="themes/blank/screen.css.less" media="screen"> <link rel="stylesheet/less" href="themes/blank/print.css.less" media="print"> <link rel="stylesheet/less" href="blank.css.less" media="screen,projection"> <!-- add js libs (less, jquery) --> <script src="js/less-1.1.4.min.js"></script> <script src="js/jquery-1.7.min.js"></script> <!-- S6 JS --> <script src="js/jquery.slideshow.js"></script> <script src="js/jquery.slideshow.counter.js"></script> <script src="js/jquery.slideshow.controls.js"></script> <script src="js/jquery.slideshow.footer.js"></script> <script src="js/jquery.slideshow.autoplay.js"></script> <script> $(document).ready( function() { Slideshow.init(); // Example 2: Start Off in Outline Mode // Slideshow.init( { mode: 'outline' } ); // Example 3: Use Custom Transition // Slideshow.transition = transitionScrollUp; // Slideshow.init(); // Example 4: Start Off in Autoplay Mode with Custom Transition // Slideshow.transition = transitionScrollUp; // Slideshow.init( { mode: 'autoplay' } ); } ); </script> </head> <body> <div class="layout"> <div id="header"></div> <div id="footer"> <div align="right"> <img src="images/concurrency.png" width="200"> </div> </div> </div> <div class="presentation"> <div class='slide cover'> <table width="90%" height="90%" border="0" align="center"> <tr> <td><div align="center"> <h1><font color="#808db5">Implementating Continuation based language in Clang and LLVM</font></h1> </div></td> </tr> <tr> <td><div align="left"> Kaito Tokumori, Shinji Kono <script> document.write("<br>July 4, 2015"); </script> <hr style="color:#ffcc00;background-color:#ffcc00;text-align:left;border:none;width:300%;height:0.2em;"> </div></td> </tr> </table> </div> <div class='slide'> <h2>Objective</h2> <ul> <li>Reliable computation <li>Concurrent execution <li>Reliable improvement <li>Reusablity </ul> <h3>Introducing new units of programming</h3> </div> <div class='slide'> <h2>Traditional units of programming</h2> <ul> <li>Machine instruction <li>Statements of programming language <li>Function call / Method <li>Module / Class / Interface <li>Thread / Process <li>Object <li>Record / Table </ul> </div> <div class='slide'> <h2>What we want to do with programming units?</h2> <ul> <li>Divide large functions into small parts. <li>Add hidden arguments without code modification. <li>Add meta computation. <li>Extract concurrency from programming units. </ul> <h3>It is not easy in the traditional units.</h3> </div> <div class='slide'> <h2>New programing units</h2> <ul> <li>Units of programming: code segments, data segments. <li>Code segments are units of calculation. <li>Data segments are sets of typed data. </ul> </div> <div class='slide'> <h2>Code segments</h2> <ul> <li>Function from input data segments to output data segments. <li>Code segments have no states. <li>Access in typed data in the data segments by name. <li>Specify code segmnets to be executed using goto. </ul> <h3>It is easy to divide or combine.</h3> </div> <div class='slide'> <h2>Data segments</h2> <ul> <li>Set of typed data. <li>Type signatures are in meta data segments. <li>Variable and extendable data structure. <li>Data segments are dominated by connected code segments. <li>Code segments atomically access connected data segments. </ul> <h3>It is easy to divide or combine.</h3> </div> <div class='slide'> <h2>Meta code / data segments</h2> <ul> <li>Execution contexts: Thread <li>Type signatures of data segments. <li>Data segment linkages: Pointer <li>Machine code </ul> <h3>Meta code segments are executed right after the goto.</h3> <h3>Meta data segments are kinds of process data.</h3> </div> <div class='slide'> <h2>Continuation based C (CbC)</h2> <ul> <li>An implementation of code segments. <li>CbC stands for Continuation based C. <li>Basic syntax is the same as the C. <li>Code segments are set of C statements with goto. <li>Data segments are inplemented as C structures. </ul> </div> <div class='slide'> <h2>CbC sample</h2> <table border='1' align='center' width='80%'> <tr><td width='50%'> <pre class='small_code'> __code f() { goto g(); } __code g() { goto h(); } </pre> </td><td valign='top'> <ul> <li>Code segments like C functions. <li>CbC transition is goto. <li>Code segments do not return to previous. <li>There are no return values. </ul> </td></tr> </table> </div> <div class='slide'> <h2>CbC sample with data segments</h2> <table border='1' align='center' width='80%'> <tr><td width='50%'> <pre class='small_code'> __code code(struct Context* context, struct Allocate* allocate, struct Element* element) { allocate->after_append = Code2; element ->value = 10; goto meta(context, Append); } __code append(struct Context* context, struct Allocate* allocate, struct List* list, struct Element* element) { if(list->head) { list->tail->next = element; } else { list->head = element; } list->tail = element; list->tail->next = 0; goto meta(context, allocate->after_append); } __code meta(struct Context* context, enum Code next) { goto (context->code[next])(context); } </pre> </td><td valign='top'> <ul> <li>A part of list program. <li>Code segment transition into next one via meta code segment. <li>Context has code segments name. <li>Context give meta code segments next code segment pointer. </ul> </td></tr> </table> </div> <div class='slide'> <h2>CbC compilers</h2> <ul> <li>Micro-C(one pass standalone compiler) <li>GCC(GNU Compiler Collection) <li>LLVM and Clang <ul> <li><font color='red'>The latest!</font> </ul> </ul> </div> <div class='slide'> <h2>What are LLVM and Clang?</h2> <ul> <li>Compiler frameworks. <li>has a intermidiate language which is called LLVM IR, LLVM language or LLVM bitcode. <li>Translates LLVM IR to assembly language. <li>Many kinds of optimization. <li>Clang is C, C++ and Obj-C compiler frontend. <li>Clang uses LLVM for compiler backend. </ul> </div> <div class='slide'> <h2>Why?</h2> <ul> <li>Apple supported. <li>OS X default compiler. <li>LLVM IR has readable documents. <li>More readable and modifiable than GCC. </ul> </div> <div class='slide'> <h2>LLVM and Clang's compilation flow</h2> <ul> <li>Clang translate C/C++/Obj-C into LLVM IR. <li>LLVM translate LLVM IR into assembly code. <li>LLVM optimize all of intermidiate representation. </ul> <div align="center"><img src="fig/clang_llvm_structure.svg" width="45%"></div> </div> <div class='slide'> <h2>LLVM and Clang's intermidiate representations</h2> <ul> <li>clang AST <li>LLVM IR <li>SelectionDAG <li>Machine Code <li>MC Layer </ul> <h3 align='center'>Intermidiate representations are not modified.</h3> </div> <div class='slide'> <h2>Clang AST</h2> <ul> <li>Abstract Syntax Tree. <li>Representation of the source codes structure. <li>Basic node type: Stmt, Decl, Expr. </ul> </div> <div class='slide'> <h2>LLVM IR</h2> <ul> <li>The main intermidiate representation. <li>LLVM translate it into assembly codes. <li>Three forms: in-memory compiler IR, on-disk bitcode, assembly language. </ul> <table width='100%'> <tr> <td style="border: double;"> <pre class='code'> define fastcc void @factorial(i32 %x) #0 { entry: tail call fastcc void @factorial0(i32 1, i32 %x) ret void } </pre> </td> </tr> </table> </div> <div class='slide'> <h2>Basic strategy of implementating</h2> <ul> <li>Code segments are implemented by C functions. <li>Data segments are implemented by C structs. <li>Transition is implemented by tail call elimination. <li>Goto with environment is implemented by setjmp and longjmp. <ul> <li>Goto with environment enable code segments to return C functions. </ul> </ul> </div> <!-- <div class='slide'> <h2>Implementating CbC compiler in LLVM and Clang</h2> <ul> <li>__code type. <li>Goto syntax. <li>Force to do tail call elimination. <li>Goto with environment. <li>Automatically prototype declatation genarating. </ul> </div> --> <div class='slide'> <h2>Parser</h2> <ul> <li>__code type <li>Prototype declaration generating <li>Goto syntax for transitions </ul> <div align='center'><img src="fig/clang_llvm_slide_parse.svg" width="60%"></div> </div> <div class='slide'> <h2>__code type</h2> <table width='100%'> <tr> <ul> <li>Code segments as __code type functions. <li>Handled like void functions. </ul> </tr> </table> </div> <div class='slide'> <h2>Prototype declaration generating</h2> <ul> <li>In CbC, programmer write a lot of code segments. <li>When function pointer's arguments are omitted, TCE was failed sometimes. <li>Automatically prototype declaration generating saves a lot of effort. <li>When parser meet a code segment call, it stop current parsing and search called code segment declaration. <li>If the declaration was not found, search definision and generate declaration. <ul> <li>Of course you can write declaration yourself too. </ul> </ul> <table border='1' width='80%' align='center'> <tr> <td>original input code <td>Clang genarates it </tr> <tr> <td><pre class='small_code'> __code code1(int a, int b) { : goto code2(a,b); } __code code2(int a, int b){ : } </pre> <td><pre class='small_code'> <font color='red'>__code code2(int a, int b);</font> __code code1(int a, int b) { : goto code2(a,b); } __code code2(int a, int b){ : } </pre> </tr> </table> </div> <div class='slide'> <h2>goto syntax for transition</h2> <table width='100%'> <tr><td> <ul> <li>New goto syntax for transition. <li>Generate normal function call. <li>Tail call elimination is forced later. </ul> </tr> </table> </div> <div class='slide'> <h2>goto syntax for transition</h2> <ul> <li>Add return statement after goto transition. <li>It is one the requirement force to tail call elimination. </ul> <table border='1' width='80%' align='center'> <tr> <td>original input code <td>Clang genarates it </tr> <tr> <td><pre class='small_code'> __code code1() { : goto code2(); } </pre> <td><pre class='small_code'> void code1() { : code2(); <font color='red'>return;</font> } </pre> </tr> </table> </div> <div class='slide'> <h2>Forcing Tail Call Elimination</h2> <p>TCE is enabled at CodeGen.</p> <p>TCE is act at SelectionDAGISel.</p> <div align='center'><img src="fig/clang_llvm_slide_cg_DAG.svg" width="60%"></div> </div> <div class='slide'> <!-- <h2>Jmp instruction based transition</h2> --> <h2>What is tail call elimination?</h2> <ul> <li>Tail call is immediately followed by return. <li>Tail call elimination replace tail call's call instructions with jmp instructions. <li>Transitions are implemented by forced tail call elimination. </ul> <div align='center'><img src="fig/TCE.svg" width="40%"></div> </div> <div class='slide'> <h2>Forcing Tail Call Elimination</h2> <ul> <li>LLVM IR has function call flags. <li>tail mean it is tail call. <li>Calling convention tell compiler how callee functions receive parameters from their caller. </ul> <table width='100%'> <tr> <td style="border: double;"> <pre class='code'> define fastcc void @factorial(i32 %x) #0 { entry: <font color='red'>tail</font> call <font color='red'>fastcc</font> void @factorial0(i32 1, i32 %x) ret void } </pre> </td> </tr> </table> <div align='center'><h3>Use them for force to tail call elimination.</h3></div> </div> <div class='slide'> <h2>Forcing Tail Call Elimination</h2> <p>Tail Call Elimination requirements</p> <ul> <li>Set tail flag at the code segments call. <li>Tailcallopt is enabled. <li>The caller and calle's calling conventions must be the same and their types should be cc10, cc11 or fastcc. <li>Return value type has to be the same as the caller's. </ul> </div> <div class='slide'> <h2>Forcing Tail Call Elimination</h2> <ul> <li>Always add tail call elimination pass. <li>Tailcallopt is enabled in CbC. <li>Fast cc is used consistently in code segments call. <li>All the code segments return value type is void. </ul> </div> <div class='slide'> <h2>What is a Goto with environment?</h2> <ul> <li>Code segments can reutn C functions by Goto with environment. <ul> Code segment do not have return. </ul> <li>In the GCC, use nested functions. <li>In the LLVM and Clang, use setjmp and longjmp. </ul> </div> <div class='slide'> <h2>Sample code of Goto with environment</h2> <table width='100%'> <tr><td valign='top'> <ul> <li>Use new keywords __return and __environment. <li>__return is a code segment pointer for C functions. <li>__environment is a envitonment for C functions. <li>Code1 use a continuation with environments to return main function. </ul> <td style="border: double;"> <pre class='small_code'><div class='highlight'>__code code1(int n,__code(*exit_code)(int,void *),void *exit_env){ printf("code1 : code entry1\n"); goto exit_code(n,exit_env); } int caller(){ printf("caller : main1 entry\n"); __code (*__ret)(int, void *) = <font color='red'>__return</font>; struct __CbC_env *__env = <font color='red'>__environment</font>; goto code1(1, __ret, __env); return 0; } int main(){ int n; n = caller(); printf("return = %d\n",n); return 0; } </div></pre> </tr> </table> </div> <div class='slide'> <h2>Implementing goto with environment</h2> <ul> <li>Include setjmp.h always. <li>Generate C struct for saving environment. <ul> <li>This struct is __environment. </ul> <li>Insert setjmp in C function. <li>Generate longjmp code segment as return. <ul> <li>This code segment is pointed by __return. </ul> </ul> </div> <div class='slide'> <h2>Compiling result</h2> <table width='100%' align='center' border='1'> <tr> <td valign='top'> <pre class='small_code'> __code caller(int x) { goto code1(1, x); // should be jmp } </pre> <td> <pre class='small_code'> _caller: ## @factorial .cfi_startproc ## BB#0: ## %entry subq $24, %rsp Ltmp5: .cfi_def_cfa_offset 32 movl $1, %eax movl %edi, 20(%rsp) ## 4-byte Spill movl %eax, %edi movl 20(%rsp), %esi ## 4-byte Reload addq $24, %rsp <font color='red'>jmp</font> _code1 ## TAILCALL .cfi_endproc </pre> </tr> </table> <ul> <li>Code1 should called by jmp instruction. <li>In assembly code, code1 called by jmp instruction. <li>Tail call elimination was forced. <li>If tail call elimination was failed, compiler output error messages. </ul> </div> <!-- <div class='slide'> <h2>Execution Result</h2> <ul> <li>Conv1 program. <ul> <li>Repeat calculation program. <li>Stack is defined in the program. </ul> <li>Select execution code by arguments. <ul> <li>1: not optimized. <li>2,3: optimized stack operation. </ul> <li>Inline optimization is omitted. </ul> <table width='80%' align='center' border='1'> <tr> <td width='30%'> <td>Argument 1 <td>Argument 2 <td>Argument 3 </tr> <tr> <td>Micro-C <td>6.875 <td>2.4562 <td>3.105 </tr> <tr> <td>GCC -O2 <td>2.9438 <td>0.955 <td>1.265 </tr> <tr> <td>LLVM and Clang -O0 <td>5.835 <td>4.1887 <td>5.0625 </tr> <tr> <td>LLVM and Clang -O2 <td>3.3875 <td>2.29 <td>2.5087 </tr> </table> <table width='80%' align='center' border='0'> <tr><td align='right'>unit : seconds</tr> </table> <ul> <li>LLVM and Clang compilers are faster than Micro-C when optimize is enabled. <li>CbC gets benefits from LLVM optimizations. <li>LLVM can compile CbC examples. </ul> </div> --> <div class='slide'> <h2>Conclusion</h2> <ul> <li>CbC compiler on LLVM and Clang is implemented. <li>LLVM IR is not modified. <li>goto with environment is implemented by setjmp and longjmp. <li>Automatic prototype generating. </ul> </div> <div class='slide'> <h2>Future works</h2> <ul> <li>Write operating system in CbC. <ul> <li>Gears OS </ul> <li>Meta computation syntax. <li>More user friendly syntax. <li>Automitic data segment generator. <li>Signature for data segment. </ul> </div> <div class='slide'> <h2>LLVM and Clang's intermidiate representations</h2> <table border='1' align='center' width='80%'> <tr><td width='25%'> Name </td><td> Desctiption </td></tr> <tr><td> clang AST </td><td> Abstract Syntax Tree. It is a representation of the structure source codes. </td></tr> <tr><td> LLVM IR </td><td> The main intermidiate representation of LLVM. It has three diffirent forms: as an in-memory compiler IR, as an on-disk bitcode representation, and as a human readable assembly language representation. </td></tr> <tr><td> SelectionDAG </td><td> Directed Acyclic Graph. Its nodes indicate what operation the node performs and the operands to the operation. </td></tr> <tr><td> Machine Code </td><td> This representation is designed to support both an SSA representation for machine code, as well as register allocated, non-SSA form. </td></tr> <tr><td> MC Layer </td><td> It is used to represent and process code at the raw machine code level. User can some kinds of file (.s, .o, .ll, a.out) by same API. </td></tr> </table> </div> </div> <!-- presentation --> </body> </html>