view paper/cbc-type.tex @ 61:3981580ece72

Add Meta DataSegment description
author atton <atton@cr.ie.u-ryukyu.ac.jp>
date Fri, 03 Feb 2017 10:23:26 +0900
parents ecd3a1e40921
children a40033d3e10f
line wrap: on
line source

\chapter{Agda における Continuation based C の表現}
\label{chapter:cbc-type}
CbC の項を部分型を用いて Agda 上に記述していく。
DataSegment と CodeSegment の定義、CodeSegment の接続と実行、メタ計算を定義し、 Agda 上で実行できることを確認する。
また、Agda上で定義した DataSegment とそれに付随する CodeSegment の持つ性質を Agda 上で証明していく。

% {{{ DataSegment の定義
\section{DataSegment の定義}
まず DataSegment から定義していく。
DataSegment はレコード型で表現できるため、Agda のレコードをそのまま利用できる。
例えは~\ref{src:goto} に示していた a と b を加算して c を出力するプログラムに必要な DataSegment を記述すると~\ref{src:agda-ds}のようになる。
cs0 は a と b の二つの Int 型の変数を利用するため、対応する ds0 は a と b のフィールドを持つ。
cs1 は計算結果を格納する c という名前の変数のみを持つので、同様にds1もcのみを持つ。

\lstinputlisting[label=src:agda-ds, caption=Agda における DataSegment の定義] {src/DataSegment.agda}
% }}}

% {{{ CodeSegment の定義
\section{CodeSegment の定義}
次に CodeSegment を定義する。
CodeSegment は DataSegment を取って DataSegment を返すものである。
よって $ I \rightarrow O $ を内包するデータ型を定義する。

レコード型の型は Set なので、Set 型を持つ変数 I と O を型変数に持ったデータ型 CodeSegment を定義する。
I は Input DataSegment の型であり、 O は  Output DataSegment である。

CodeSegment 型のコンストラクタには \verb/cs/ があり、Input DataSegment を取って Output DataSegment を返す関数を取る。
具体的なデータ型の定義はリスト ~\ref{src:agda-cs} のようになる。

\lstinputlisting[label=src:agda-cs, caption= Agda における CodeSegment 型の定義] {src/CodeSegment.agda.replaced}

この CodeSegment 型を用いて CodeSegment の処理本体を記述する。

まず計算の本体となる cs0 に注目する。
cs0 は二つのInt型変数を持つ ds0 を取り、一つのInt型変数を作った上で cs1 に軽量継続を行なう。
DataSegment はレコードなので、a と b のフィールドから値を取り出した上で加算を行ない、cを持つレコードを生成する。
そのレコードを引き連れたまま cs1 へと goto する。

次に cs1 に注目する。
cs1 は値に触れず cs2 へと goto するだけである。
よって何もせずにそのまま goto する関数をコンストラクタ\verb/cs/ に渡すだけで良い。

最後に cs2 である。
cs2 はリスト~\ref{src:goto}では省略していたが、今回は計算を終了させる CodeSegment として定義する。
どの CodeSegment にも軽量継続せずに値を持ったまま計算を終了させる。
コンストラクタ \verb/cs/ には関数を与えなくては値を構成できないため、何もしない関数である id を渡している。

最後に計算をする cs0 へと軽量継続する main を定義する。
例として、 a の値を 100 とし、 b の値を50としている。

cs0, cs1, cs2, main をAgda で定義するとリスト~\ref{src:agda-css}のようになる。

\lstinputlisting[label=src:agda-css, caption= Agda における CodeSegment の定義] {src/CodeSegments.agda}

正しく計算が行なえたなら値150が得られるはずである。
% }}}

% {{{ ノーマルレベル計算の実行
\section{ノーマルレベル計算の実行}
プログラムを実行することは \verb/goto/ を定義することと同義である。
軽量継続\verb/goto/ の性質としては

\begin{itemize}
    \item 次に実行する CodeSegment を指定する
    \item CodeSegment に渡すべき DataSegment を指定する
    \item 現在実行している CodeSegment から制御を指定された CodeSegment へと移動させる
\end{itemize}

がある。
Agda における CodeSegment の本体は関数である。
関数をそのまま使用すると再帰を許してしまうために CbC との対応が失われてしまう。
よって、\verb/goto/を利用できるのは関数の末尾のみである、という制約を関数に付け加える必要がある。

この制約さえ満たせば、CodeSegment の実行は CodeSegment 型から関数本体を取り出し、レコード型を持つ値を適用することに相当する。
具体的に \verb/goto/ を関数として適用するとリスト~\ref{src:agda-goto}のようになる。

\lstinputlisting[label=src:agda-goto, caption=Agdaにおける goto の定義] {src/Goto.agda}

この \verb/goto/ の定義を用いることで main などの関数が評価できるようになり、値150が得られる。
本文中での CodeSegment の定義は一部を抜粋している。
実行可能な Agda のソースコードは付録に載せる。% TODO: Appendix

% }}}

% {{{ Meta DataSegment の定義

\section{Meta DataSegment の定義}
ノーマルレベルの CbC を Agda 上で記述し、実行することができた。
次にメタレベルの計算を Agda 上で記述していく。

Meta DataSegment はノーマルレベルの DataSegment の集合として定義できるものであり、全ての DataSegment の部分型であった。
ノーマルレベルの DataSegment はプログラムによって変更されるので、事前に定義できるものではない。
ここで、Agda の Parameterized Module を利用して、「Meta DataSegment の上位型は DataSegment である」のように DataSegment を定義する。
こうすることにより、全てのプログラムは一つ以上の Meta DataSegment を持ち、任意の個数の DataSegment を持つ。
また、Meta DataSegment をメタレベルの DataSegment として扱うことにより、「Meta DataSegment の部分型である Meta Meta DataSegment」を定義できるようになる。
階層構造でメタレベルを表現することにより、計算の拡張を自在に行なうことができる。

具体的な Meta DataSegment の定義はリスト~\ref{src:agda-mds}のようになる。
型システム \verb/subtype/ は、Meta DataSegment である \verb/Context/ を受けとることにより構築される。
Context を Meta DataSegment とするプログラム上では DataSegment は Meta CodeSegment の上位型となる。
その制約を \verb/DataSegment/ 型は表わしている。

\lstinputlisting[label=src:agda-mds, caption=Agda における Meta DataSegment の定義] {src/MetaDataSegment.agda}


ここで、関数を部分型に拡張する S-ARROW をもう一度示す。

\begin{align*}
    \AxiomC{$ T_1 <: S_1$}
    \AxiomC{$ S_2 <: T_2$}
    \BinaryInfC{$ S_1 \rightarrow S_2 <: T_1 \rightarrow T_2 $}
    \DisplayProof && \text{S-ARROW}
\end{align*}

S-ARROW は、前提である部分型関係 $ T_1 <: S_1 $ と $ S_2 <: T_2 $ が成り立つ時に、 上位型 $ S_1 \rightarrow S_2 $ の関数を、部分型 $ T_1 \rightarrow T_2 $ に拡張できた。
ここでの上位型は DataSegment であり、部分型は Meta DataSegment である。
制約\verb/DataSegment/ の \verb/get/ は、 Meta DataSegment から DataSegment が生成できることを表す。
これは前提 $ T_1 <: S_1 $ に相当する。
そして、\verb/set/ は $ S_2 <: T_2 $ に相当する。
しかし、任意の DataSegment が Meta DataSegment の部分型となるには、 DataSegment が Meta DataSegment よりも多くの情報を必ず持たなくてはならないが、これは通常では成り立たない。
だが、メタ計算を行なう際には常に Meta DataSegment を一つ以上持っていると仮定するならば成り立つ。
実際、GearsOS における赤黒木では Meta DataSegment に相当する \verb/Context/ を常に持ち歩いている。
GearsOS における計算結果はその持ち歩いている Meta DataSegment の更新に相当するため、常に Meta DataSegment を引き連れていることを無視すれば DataSegment から Meta DataSegment を導出できる。
よって $ S_2 <: T_2 $ が成り立つ。

なお、 $ S_2 <: T_2 $ は Output DataSegment を Meta DataSegment を格納する作業に相当し、 $ T_1 <: S_1 $ は Meta DataSegment から Input DataSegment を取り出す作業であるため、これは明らかに \verb/stub/ である。

% }}}

\section{MetaCodeSegment の定義}
\section{メタレベル計算の実行}
\section{Agda を用いたContinuation based C の検証}
\section{スタックの実装の検証}