Mercurial > hg > Papers > 2017 > atton-master
view paper/cbc-type.tex @ 61:3981580ece72
Add Meta DataSegment description
author | atton <atton@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 03 Feb 2017 10:23:26 +0900 |
parents | ecd3a1e40921 |
children | a40033d3e10f |
line wrap: on
line source
\chapter{Agda における Continuation based C の表現} \label{chapter:cbc-type} CbC の項を部分型を用いて Agda 上に記述していく。 DataSegment と CodeSegment の定義、CodeSegment の接続と実行、メタ計算を定義し、 Agda 上で実行できることを確認する。 また、Agda上で定義した DataSegment とそれに付随する CodeSegment の持つ性質を Agda 上で証明していく。 % {{{ DataSegment の定義 \section{DataSegment の定義} まず DataSegment から定義していく。 DataSegment はレコード型で表現できるため、Agda のレコードをそのまま利用できる。 例えは~\ref{src:goto} に示していた a と b を加算して c を出力するプログラムに必要な DataSegment を記述すると~\ref{src:agda-ds}のようになる。 cs0 は a と b の二つの Int 型の変数を利用するため、対応する ds0 は a と b のフィールドを持つ。 cs1 は計算結果を格納する c という名前の変数のみを持つので、同様にds1もcのみを持つ。 \lstinputlisting[label=src:agda-ds, caption=Agda における DataSegment の定義] {src/DataSegment.agda} % }}} % {{{ CodeSegment の定義 \section{CodeSegment の定義} 次に CodeSegment を定義する。 CodeSegment は DataSegment を取って DataSegment を返すものである。 よって $ I \rightarrow O $ を内包するデータ型を定義する。 レコード型の型は Set なので、Set 型を持つ変数 I と O を型変数に持ったデータ型 CodeSegment を定義する。 I は Input DataSegment の型であり、 O は Output DataSegment である。 CodeSegment 型のコンストラクタには \verb/cs/ があり、Input DataSegment を取って Output DataSegment を返す関数を取る。 具体的なデータ型の定義はリスト ~\ref{src:agda-cs} のようになる。 \lstinputlisting[label=src:agda-cs, caption= Agda における CodeSegment 型の定義] {src/CodeSegment.agda.replaced} この CodeSegment 型を用いて CodeSegment の処理本体を記述する。 まず計算の本体となる cs0 に注目する。 cs0 は二つのInt型変数を持つ ds0 を取り、一つのInt型変数を作った上で cs1 に軽量継続を行なう。 DataSegment はレコードなので、a と b のフィールドから値を取り出した上で加算を行ない、cを持つレコードを生成する。 そのレコードを引き連れたまま cs1 へと goto する。 次に cs1 に注目する。 cs1 は値に触れず cs2 へと goto するだけである。 よって何もせずにそのまま goto する関数をコンストラクタ\verb/cs/ に渡すだけで良い。 最後に cs2 である。 cs2 はリスト~\ref{src:goto}では省略していたが、今回は計算を終了させる CodeSegment として定義する。 どの CodeSegment にも軽量継続せずに値を持ったまま計算を終了させる。 コンストラクタ \verb/cs/ には関数を与えなくては値を構成できないため、何もしない関数である id を渡している。 最後に計算をする cs0 へと軽量継続する main を定義する。 例として、 a の値を 100 とし、 b の値を50としている。 cs0, cs1, cs2, main をAgda で定義するとリスト~\ref{src:agda-css}のようになる。 \lstinputlisting[label=src:agda-css, caption= Agda における CodeSegment の定義] {src/CodeSegments.agda} 正しく計算が行なえたなら値150が得られるはずである。 % }}} % {{{ ノーマルレベル計算の実行 \section{ノーマルレベル計算の実行} プログラムを実行することは \verb/goto/ を定義することと同義である。 軽量継続\verb/goto/ の性質としては \begin{itemize} \item 次に実行する CodeSegment を指定する \item CodeSegment に渡すべき DataSegment を指定する \item 現在実行している CodeSegment から制御を指定された CodeSegment へと移動させる \end{itemize} がある。 Agda における CodeSegment の本体は関数である。 関数をそのまま使用すると再帰を許してしまうために CbC との対応が失われてしまう。 よって、\verb/goto/を利用できるのは関数の末尾のみである、という制約を関数に付け加える必要がある。 この制約さえ満たせば、CodeSegment の実行は CodeSegment 型から関数本体を取り出し、レコード型を持つ値を適用することに相当する。 具体的に \verb/goto/ を関数として適用するとリスト~\ref{src:agda-goto}のようになる。 \lstinputlisting[label=src:agda-goto, caption=Agdaにおける goto の定義] {src/Goto.agda} この \verb/goto/ の定義を用いることで main などの関数が評価できるようになり、値150が得られる。 本文中での CodeSegment の定義は一部を抜粋している。 実行可能な Agda のソースコードは付録に載せる。% TODO: Appendix % }}} % {{{ Meta DataSegment の定義 \section{Meta DataSegment の定義} ノーマルレベルの CbC を Agda 上で記述し、実行することができた。 次にメタレベルの計算を Agda 上で記述していく。 Meta DataSegment はノーマルレベルの DataSegment の集合として定義できるものであり、全ての DataSegment の部分型であった。 ノーマルレベルの DataSegment はプログラムによって変更されるので、事前に定義できるものではない。 ここで、Agda の Parameterized Module を利用して、「Meta DataSegment の上位型は DataSegment である」のように DataSegment を定義する。 こうすることにより、全てのプログラムは一つ以上の Meta DataSegment を持ち、任意の個数の DataSegment を持つ。 また、Meta DataSegment をメタレベルの DataSegment として扱うことにより、「Meta DataSegment の部分型である Meta Meta DataSegment」を定義できるようになる。 階層構造でメタレベルを表現することにより、計算の拡張を自在に行なうことができる。 具体的な Meta DataSegment の定義はリスト~\ref{src:agda-mds}のようになる。 型システム \verb/subtype/ は、Meta DataSegment である \verb/Context/ を受けとることにより構築される。 Context を Meta DataSegment とするプログラム上では DataSegment は Meta CodeSegment の上位型となる。 その制約を \verb/DataSegment/ 型は表わしている。 \lstinputlisting[label=src:agda-mds, caption=Agda における Meta DataSegment の定義] {src/MetaDataSegment.agda} ここで、関数を部分型に拡張する S-ARROW をもう一度示す。 \begin{align*} \AxiomC{$ T_1 <: S_1$} \AxiomC{$ S_2 <: T_2$} \BinaryInfC{$ S_1 \rightarrow S_2 <: T_1 \rightarrow T_2 $} \DisplayProof && \text{S-ARROW} \end{align*} S-ARROW は、前提である部分型関係 $ T_1 <: S_1 $ と $ S_2 <: T_2 $ が成り立つ時に、 上位型 $ S_1 \rightarrow S_2 $ の関数を、部分型 $ T_1 \rightarrow T_2 $ に拡張できた。 ここでの上位型は DataSegment であり、部分型は Meta DataSegment である。 制約\verb/DataSegment/ の \verb/get/ は、 Meta DataSegment から DataSegment が生成できることを表す。 これは前提 $ T_1 <: S_1 $ に相当する。 そして、\verb/set/ は $ S_2 <: T_2 $ に相当する。 しかし、任意の DataSegment が Meta DataSegment の部分型となるには、 DataSegment が Meta DataSegment よりも多くの情報を必ず持たなくてはならないが、これは通常では成り立たない。 だが、メタ計算を行なう際には常に Meta DataSegment を一つ以上持っていると仮定するならば成り立つ。 実際、GearsOS における赤黒木では Meta DataSegment に相当する \verb/Context/ を常に持ち歩いている。 GearsOS における計算結果はその持ち歩いている Meta DataSegment の更新に相当するため、常に Meta DataSegment を引き連れていることを無視すれば DataSegment から Meta DataSegment を導出できる。 よって $ S_2 <: T_2 $ が成り立つ。 なお、 $ S_2 <: T_2 $ は Output DataSegment を Meta DataSegment を格納する作業に相当し、 $ T_1 <: S_1 $ は Meta DataSegment から Input DataSegment を取り出す作業であるため、これは明らかに \verb/stub/ である。 % }}} \section{MetaCodeSegment の定義} \section{メタレベル計算の実行} \section{Agda を用いたContinuation based C の検証} \section{スタックの実装の検証}