open import Relation.Binary.PropositionalEquality open import nat open import nat_add open ≡-Reasoning module nat_add_sym where addSym : (n m : Nat) -> n + m ≡ m + n addSym O O = refl addSym O (S m) = cong S (addSym O m) addSym (S n) O = cong S (addSym n O) addSym (S n) (S m) = {!!}