Mercurial > hg > Papers > 2017 > atton-master
changeset 72:fd984cfd5425
Add sources
author | atton <atton@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 06 Feb 2017 10:32:49 +0900 (2017-02-06) |
parents | b0cfef1cd89f |
children | a92ac75bd9fa |
files | paper/atton-master.pdf paper/cbc-type.tex paper/sources.tex paper/src/SingleLinkedStack.cbc paper/src/stack-product.agda paper/src/stack-subtype-sample.agda paper/src/stack-subtype.agda paper/src/subtype.agda |
diffstat | 8 files changed, 679 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/paper/cbc-type.tex Mon Feb 06 10:15:16 2017 +0900 +++ b/paper/cbc-type.tex Mon Feb 06 10:32:49 2017 +0900 @@ -140,8 +140,8 @@ % }}} % {{{ メタレベル計算の実行 - \section{メタレベル計算の実行} +\label{section:meta-level-exec} Meta DataSegment と Meta CodeSegment の定義を行なったので、残るは実行である。 実行はノーマルレベルにおいては軽量継続 \verb/goto/ を定義することによって表せた。 @@ -181,11 +181,14 @@ % TODO: メタの階層構造の図 +また、この節で取り扱ったソースコードは付録に付す。 + % }}} % {{{ Agda を用いた Continuation based C の検証 \section{Agda を用いた Continuation based C の検証} +\label{section:cbc-proof} Agda において CbC の CodeSegment と DataSegment を定義することができた。 実際の CbC のコードを Agda に変換し、それらの性質を証明していく。 @@ -231,6 +234,7 @@ \verb/popSingleLinkedStack/ は先頭が空でなければ先頭の値を \verb/top/ から取得し、\verb/element/を一つ進める。 値が空であれば \verb/data/ を \verb/NULL/ にしたまま軽量継続を行なう。 +% TODO null check を入れる \lstinputlisting[label=src:cbc-push-pop, caption= CbC における SingleLinkedStack を操作する Meta CodeSegment] {src/singleLinkedStack.c} 次に Agda における定義をリスト~\ref{src:agda-push-pop}に示す。 @@ -261,6 +265,7 @@ % {{{ スタックの実装の検証 \section{スタックの実装の検証} +\label{section:stack-proof} 定義した SingleLinkedStack に対して証明を行なっていく。 ここでの証明は SingleLinkedStack の処理が特定の性質を持つことを保証することである。 @@ -435,6 +440,6 @@ このように、CbC で記述されたプログラムを Agda 上に記述することで、データ構造の性質を定理として証明することができた。 これらの証明機構を CbC のコンパイラやランタイム、モデルチェッカなどに組み込むことにより CbC は CbC で記述されたコードを証明することができるようになる。 なお、本論文で取り扱っている Agda のソースコードは視認性の向上のために暗黙的な引数を省略して記述している。 -動作する完全なコードは付録に付す。 % TODO: ふろく +動作する完全なコードは付録に付す。 % }}}
--- a/paper/sources.tex Mon Feb 06 10:15:16 2017 +0900 +++ b/paper/sources.tex Mon Feb 06 10:32:49 2017 +0900 @@ -1,9 +1,29 @@ -\chapter{chapter:sources} +\chapter{ソースコード一覧} +\label{chapter:sources} 本論文中に取り上げた Agda の動作するソースコードを示す。 -\section{ノーマルレベル動作の実行} -\label{appendix:normal-level-exec} +\section{部分型の定義} +リスト~\ref{src:agda-subtype} に Agda 上で定義した CbC の部分型の定義を示す。 + +\lstinputlisting[label=src:agda-subtype, caption=Agda 上で定義した CbC の部分型の定義(subtype.agda)] {src/subtype.agda} + +\section{ノーマルレベル計算の実行} \ref{section:normal-level-exec}節で取り上げたソースコードをリスト~\ref{src:normal-level-exec}に示す。 CbC のコードにより近づけるようにA gda 上の \verb/Data.Nat/ を \verb/Int/ という名前に変更している。 -\lstinputlisting[label=src:normal-level-exec, caption=ノーマルレベル実行の完全なソースコード] {src/atton-master-sample.agda} +\lstinputlisting[label=src:normal-level-exec, caption=ノーマルレベル計算例の完全なソースコード(atton-master-sample.agda)] {src/atton-master-sample.agda.replaced} + +\section{メタレベル計算の実行} +\ref{section:meta-level-exec}節で取り上げたソースコードをリスト~\ref{src:meta-level-exec}に示す。 + +\lstinputlisting[label=src:meta-level-exec, caption=メタレベル計算例の完全なソースコード(atton-master-meta-sample.agda)] {src/atton-master-meta-sample.agda.replaced} + +\section{Agda を用いた Continuation based C の検証} +\ref{section:cbc-proof}節で取り上げたソースコードを以下に示す。 + +\lstinputlisting[label=src:cbc-proof-cbc, caption=Agda を用いた Continuation based C の検証コード(SingleLinkedStack.cbc)] {src/SingleLinkedStack.cbc} +\lstinputlisting[label=src:cbc-proof-agda, caption=Agda を用いた Continuation based C の検証コード(stack-subtype.agda)] {src/stack-subtype.agda.replaced} + +\section{スタックの実装の検証} +\ref{section:stack-proof}節で取り上げたソースコードをリスト~\ref{src:stack-proof}に示す。 +\lstinputlisting[label=src:stack-proof, caption=スタックの実装の検証コード(stack-subtype-sample.agda)] {src/stack-subtype-sample.agda.replaced}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/paper/src/SingleLinkedStack.cbc Mon Feb 06 10:32:49 2017 +0900 @@ -0,0 +1,111 @@ +#include "../context.h" +#include "../origin_cs.h" +#include <stdio.h> + +// typedef struct SingleLinkedStack { +// struct Element* top; +// } SingleLinkedStack; + +Stack* createSingleLinkedStack(struct Context* context) { + struct Stack* stack = new Stack(); + struct SingleLinkedStack* singleLinkedStack = new SingleLinkedStack(); + stack->stack = (union Data*)singleLinkedStack; + singleLinkedStack->top = NULL; + stack->push = C_pushSingleLinkedStack; + stack->pop = C_popSingleLinkedStack; + stack->pop2 = C_pop2SingleLinkedStack; + stack->get = C_getSingleLinkedStack; + stack->get2 = C_get2SingleLinkedStack; + stack->isEmpty = C_isEmptySingleLinkedStack; + stack->clear = C_clearSingleLinkedStack; + return stack; +} + +void printStack1(union Data* data) { + struct Node* node = &data->Element.data->Node; + if (node == NULL) { + printf("NULL"); + } else { + printf("key = %d ,", node->key); + printStack1((union Data*)data->Element.next); + } +} + +void printStack(union Data* data) { + printStack1(data); + printf("\n"); +} + +__code clearSingleLinkedStack(struct SingleLinkedStack* stack,__code next(...)) { + stack->top = NULL; + goto next(...); +} + +// TODO +__code pushSingleLinkedStack(struct SingleLinkedStack* stack,union Data* data, __code next(...)) { + Element* element = new Element(); + element->next = stack->top; + element->data = data; + stack->top = element; + goto next(...); +} + +__code popSingleLinkedStack(struct SingleLinkedStack* stack, __code next(union Data* data, ...)) { + if (stack->top) { + data = stack->top->data; + stack->top = stack->top->next; + } else { + data = NULL; + } + goto next(data, ...); +} + +__code pop2SingleLinkedStack(struct SingleLinkedStack* stack, __code next(union Data* data, union Data* data1, ...)) { + if (stack->top) { + data = stack->top->data; + stack->top = stack->top->next; + } else { + data = NULL; + } + if (stack->top) { + data1 = stack->top->data; + stack->top = stack->top->next; + } else { + data1 = NULL; + } + goto next(data, data1, ...); +} + + +__code getSingleLinkedStack(struct SingleLinkedStack* stack, __code next(union Data* data, ...)) { + if (stack->top) + data = stack->top->data; + else + data = NULL; + goto next(data, ...); +} + +__code get2SingleLinkedStack(struct SingleLinkedStack* stack, __code next(union Data* data, union Data* data1, ...)) { + if (stack->top) { + data = stack->top->data; + if (stack->top->next) { + data1 = stack->top->next->data; + } else { + data1 = NULL; + } + } else { + data = NULL; + data1 = NULL; + } + goto next(data, data1, ...); +} + +__code isEmptySingleLinkedStack(struct SingleLinkedStack* stack, __code next(...), __code whenEmpty(...)) { + if (stack->top) + goto next(...); + else + goto whenEmpty(...); +} + + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/paper/src/stack-product.agda Mon Feb 06 10:32:49 2017 +0900 @@ -0,0 +1,158 @@ +module stack-product where + +open import product +open import Data.Product +open import Data.Nat +open import Function using (id) +open import Relation.Binary.PropositionalEquality + +-- definition based from Gears(209:5708390a9d88) src/parallel_execution +goto = executeCS + +data Bool : Set where + True : Bool + False : Bool + +data Maybe (a : Set) : Set where + Nothing : Maybe a + Just : a -> Maybe a + + +record Stack {a t : Set} (stackImpl : Set) : Set where + field + stack : stackImpl + push : CodeSegment (stackImpl × a × (CodeSegment stackImpl t)) t + pop : CodeSegment (stackImpl × (CodeSegment (stackImpl × Maybe a) t)) t + + +data Element (a : Set) : Set where + cons : a -> Maybe (Element a) -> Element a + +datum : {a : Set} -> Element a -> a +datum (cons a _) = a + +next : {a : Set} -> Element a -> Maybe (Element a) +next (cons _ n) = n + +record SingleLinkedStack (a : Set) : Set where + field + top : Maybe (Element a) +open SingleLinkedStack + +emptySingleLinkedStack : {a : Set} -> SingleLinkedStack a +emptySingleLinkedStack = record {top = Nothing} + + + + +pushSingleLinkedStack : {a t : Set} -> CodeSegment ((SingleLinkedStack a) × a × (CodeSegment (SingleLinkedStack a) t)) t +pushSingleLinkedStack = cs push + where + push : {a t : Set} -> ((SingleLinkedStack a) × a × (CodeSegment (SingleLinkedStack a) t)) -> t + push (stack , datum , next) = goto next stack1 + where + element = cons datum (top stack) + stack1 = record {top = Just element} + +popSingleLinkedStack : {a t : Set} -> CodeSegment (SingleLinkedStack a × (CodeSegment (SingleLinkedStack a × Maybe a) t)) t +popSingleLinkedStack = cs pop + where + pop : {a t : Set} -> (SingleLinkedStack a × (CodeSegment (SingleLinkedStack a × Maybe a) t)) -> t + pop (record { top = Nothing } , nextCS) = goto nextCS (emptySingleLinkedStack , Nothing) + pop (record { top = Just x } , nextCS) = goto nextCS (stack1 , (Just datum1)) + where + datum1 = datum x + stack1 = record { top = (next x) } + + + + + +createSingleLinkedStack : {a b : Set} -> Stack {a} {b} (SingleLinkedStack a) +createSingleLinkedStack = record { stack = emptySingleLinkedStack + ; push = pushSingleLinkedStack + ; pop = popSingleLinkedStack + } + + + + +test01 : {a : Set} -> CodeSegment (SingleLinkedStack a × Maybe a) Bool +test01 = cs test01' + where + test01' : {a : Set} -> (SingleLinkedStack a × Maybe a) -> Bool + test01' (record { top = Nothing } , _) = False + test01' (record { top = Just x } , _) = True + + +test02 : {a : Set} -> CodeSegment (SingleLinkedStack a) (SingleLinkedStack a × Maybe a) +test02 = cs test02' + where + test02' : {a : Set} -> SingleLinkedStack a -> (SingleLinkedStack a × Maybe a) + test02' stack = goto popSingleLinkedStack (stack , (cs id)) + + +test03 : {a : Set} -> CodeSegment a (SingleLinkedStack a) +test03 = cs test03' + where + test03' : {a : Set} -> a -> SingleLinkedStack a + test03' a = goto pushSingleLinkedStack (emptySingleLinkedStack , a , (cs id)) + + +lemma : {A : Set} {a : A} -> goto (test03 ◎ test02 ◎ test01) a ≡ False +lemma = refl + + +n-push : {A : Set} {a : A} -> CodeSegment (ℕ × SingleLinkedStack A) (ℕ × SingleLinkedStack A) +n-push {A} {a} = cs (push {A} {a}) + where + push : {A : Set} {a : A} -> (ℕ × SingleLinkedStack A) -> (ℕ × SingleLinkedStack A) + push {A} {a} (zero , s) = (zero , s) + push {A} {a} (suc n , s) = goto pushSingleLinkedStack (s , a , {!!} {- n-push -}) -- needs subtype + + +{- + +n-push : {A : Set} {a : A} -> Nat -> SingleLinkedStack A -> SingleLinkedStack A +n-push zero s = s +n-push {A} {a} (suc n) s = pushSingleLinkedStack (n-push {A} {a} n s) a (\s -> s) + +n-pop : {A : Set} {a : A} -> Nat -> SingleLinkedStack A -> SingleLinkedStack A +n-pop zero s = s +n-pop {A} {a} (suc n) s = popSingleLinkedStack (n-pop {A} {a} n s) (\s _ -> s) + +open ≡-Reasoning + +push-pop-equiv : {A : Set} {a : A} (s : SingleLinkedStack A) -> popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ≡ s +push-pop-equiv s = refl + +push-and-n-pop : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) -> n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {A} {a} n s +push-and-n-pop zero s = refl +push-and-n-pop {A} {a} (suc n) s = begin + n-pop (suc (suc n)) (pushSingleLinkedStack s a id) + ≡⟨ refl ⟩ + popSingleLinkedStack (n-pop (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) + ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s)) (push-and-n-pop n s) ⟩ + popSingleLinkedStack (n-pop n s) (\s _ -> s) + ≡⟨ refl ⟩ + n-pop (suc n) s + ∎ + + +n-push-pop-equiv : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) -> (n-pop {A} {a} n (n-push {A} {a} n s)) ≡ s +n-push-pop-equiv zero s = refl +n-push-pop-equiv {A} {a} (suc n) s = begin + n-pop (suc n) (n-push (suc n) s) + ≡⟨ refl ⟩ + n-pop (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) + ≡⟨ push-and-n-pop n (n-push n s) ⟩ + n-pop n (n-push n s) + ≡⟨ n-push-pop-equiv n s ⟩ + s + ∎ + + +n-push-pop-equiv-empty : {A : Set} {a : A} -> (n : Nat) -> n-pop {A} {a} n (n-push {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack +n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack +-} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/paper/src/stack-subtype-sample.agda Mon Feb 06 10:32:49 2017 +0900 @@ -0,0 +1,212 @@ +module stack-subtype-sample where + +open import Level renaming (suc to S ; zero to O) +open import Function +open import Data.Nat +open import Data.Maybe +open import Relation.Binary.PropositionalEquality + +open import stack-subtype ℕ +open import subtype Context as N +open import subtype Meta as M + + +record Num : Set where + field + num : ℕ + +instance + NumIsNormalDataSegment : N.DataSegment Num + NumIsNormalDataSegment = record { get = (\c -> record { num = Context.n c}) + ; set = (\c n -> record c {n = Num.num n})} + NumIsMetaDataSegment : M.DataSegment Num + NumIsMetaDataSegment = record { get = (\m -> record {num = Context.n (Meta.context m)}) + ; set = (\m n -> record m {context = record (Meta.context m) {n = Num.num n}})} + + +plus3 : Num -> Num +plus3 record { num = n } = record {num = n + 3} + +plus3CS : N.CodeSegment Num Num +plus3CS = N.cs plus3 + + + +plus5AndPushWithPlus3 : {mc : Meta} {{_ : N.DataSegment Num}} + -> M.CodeSegment Num (Meta) +plus5AndPushWithPlus3 {mc} {{nn}} = M.cs (\n -> record {context = con n ; nextCS = (liftContext {{nn}} {{nn}} plus3CS) ; stack = st} ) + where + co = Meta.context mc + con : Num -> Context + con record { num = num } = N.DataSegment.set nn co record {num = num + 5} + st = Meta.stack mc + + + + +push-sample : {{_ : N.DataSegment Num}} {{_ : M.DataSegment Num}} -> Meta +push-sample {{nd}} {{md}} = M.exec {{md}} (plus5AndPushWithPlus3 {mc} {{nd}}) mc + where + con = record { n = 4 ; element = just 0} + code = N.cs (\c -> c) + mc = record {context = con ; stack = emptySingleLinkedStack ; nextCS = code} + + +push-sample-equiv : push-sample ≡ record { nextCS = liftContext plus3CS + ; stack = record { top = nothing} + ; context = record { n = 9} } +push-sample-equiv = refl + + +pushed-sample : {m : Meta} {{_ : N.DataSegment Num}} {{_ : M.DataSegment Num}} -> Meta +pushed-sample {m} {{nd}} {{md}} = M.exec {{md}} (M.csComp {m} {{md}} pushSingleLinkedStackCS (plus5AndPushWithPlus3 {mc} {{nd}})) mc + where + con = record { n = 4 ; element = just 0} + code = N.cs (\c -> c) + mc = record {context = con ; stack = emptySingleLinkedStack ; nextCS = code} + + + +pushed-sample-equiv : {m : Meta} -> + pushed-sample {m} ≡ record { nextCS = liftContext plus3CS + ; stack = record { top = just (cons 0 nothing) } + ; context = record { n = 12} } +pushed-sample-equiv = refl + + + +pushNum : N.CodeSegment Context Context +pushNum = N.cs pn + where + pn : Context -> Context + pn record { n = n } = record { n = pred n ; element = just n} + + +pushOnce : Meta -> Meta +pushOnce m = M.exec pushSingleLinkedStackCS m + +n-push : {m : Meta} {{_ : M.DataSegment Meta}} (n : ℕ) -> M.CodeSegment Meta Meta +n-push {{mm}} (zero) = M.cs {{mm}} {{mm}} id +n-push {m} {{mm}} (suc n) = M.cs {{mm}} {{mm}} (\m -> M.exec {{mm}} {{mm}} (n-push {m} {{mm}} n) (pushOnce m)) + +popOnce : Meta -> Meta +popOnce m = M.exec popSingleLinkedStackCS m + +n-pop : {m : Meta} {{_ : M.DataSegment Meta}} (n : ℕ) -> M.CodeSegment Meta Meta +n-pop {{mm}} (zero) = M.cs {{mm}} {{mm}} id +n-pop {m} {{mm}} (suc n) = M.cs {{mm}} {{mm}} (\m -> M.exec {{mm}} {{mm}} (n-pop {m} {{mm}} n) (popOnce m)) + + + +initMeta : ℕ -> Maybe ℕ -> N.CodeSegment Context Context -> Meta +initMeta n mn code = record { context = record { n = n ; element = mn} + ; stack = emptySingleLinkedStack + ; nextCS = code + } + +n-push-cs-exec = M.exec (n-push {meta} 3) meta + where + meta = (initMeta 5 (just 9) pushNum) + + +n-push-cs-exec-equiv : n-push-cs-exec ≡ record { nextCS = pushNum + ; context = record {n = 2 ; element = just 3} + ; stack = record {top = just (cons 4 (just (cons 5 (just (cons 9 nothing)))))}} +n-push-cs-exec-equiv = refl + + +n-pop-cs-exec = M.exec (n-pop {meta} 4) meta + where + meta = record { nextCS = N.cs id + ; context = record { n = 0 ; element = nothing} + ; stack = record {top = just (cons 9 (just (cons 8 (just (cons 7 (just (cons 6 (just (cons 5 nothing)))))))))} + } + +n-pop-cs-exec-equiv : n-pop-cs-exec ≡ record { nextCS = N.cs id + ; context = record { n = 0 ; element = just 6} + ; stack = record { top = just (cons 5 nothing)} + } + +n-pop-cs-exec-equiv = refl + + +open ≡-Reasoning + +id-meta : ℕ -> ℕ -> SingleLinkedStack ℕ -> Meta +id-meta n e s = record { context = record {n = n ; element = just e} + ; nextCS = (N.cs id) ; stack = s} + +exec-comp : (f g : M.CodeSegment Meta Meta) (m : Meta) -> M.exec (M.csComp {m} f g) m ≡ M.exec f (M.exec g m) +exec-comp (M.cs x) (M.cs _) m = refl + + +push-pop-type : ℕ -> ℕ -> ℕ -> Element ℕ -> Set₁ +push-pop-type n e x s = M.exec (M.csComp {meta} (M.cs popOnce) (M.cs pushOnce)) meta ≡ meta + where + meta = id-meta n e record {top = just (cons x (just s))} + +push-pop : (n e x : ℕ) -> (s : Element ℕ) -> push-pop-type n e x s +push-pop n e x s = refl + + + +pop-n-push-type : ℕ -> ℕ -> ℕ -> SingleLinkedStack ℕ -> Set₁ +pop-n-push-type n cn ce s = M.exec (M.csComp {meta} (M.cs popOnce) (n-push {meta} (suc n))) meta + ≡ M.exec (n-push {meta} n) meta + where + meta = id-meta cn ce s + +pop-n-push : (n cn ce : ℕ) -> (s : SingleLinkedStack ℕ) -> pop-n-push-type n cn ce s + +pop-n-push zero cn ce s = refl +pop-n-push (suc n) cn ce s = begin + M.exec (M.csComp {id-meta cn ce s} (M.cs popOnce) (n-push {id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})} (suc (suc n)))) (id-meta cn ce s) + ≡⟨ refl ⟩ + M.exec (M.csComp {id-meta cn ce s} (M.cs popOnce) (M.csComp {id-meta cn ce s} (n-push {id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})} (suc n)) (M.cs pushOnce))) (id-meta cn ce s) + ≡⟨ exec-comp (M.cs popOnce) (M.csComp {id-meta cn ce s} (n-push {id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})} (suc n)) (M.cs pushOnce)) (id-meta cn ce s) ⟩ + M.exec (M.cs popOnce) (M.exec (M.csComp {id-meta cn ce s} (n-push {id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})} (suc n)) (M.cs pushOnce)) (id-meta cn ce s)) + ≡⟨ cong (\x -> M.exec (M.cs popOnce) x) (exec-comp (n-push {id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})} (suc n)) (M.cs pushOnce) (id-meta cn ce s)) ⟩ + M.exec (M.cs popOnce) (M.exec (n-push {id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})} (suc n))(M.exec (M.cs pushOnce) (id-meta cn ce s))) + ≡⟨ refl ⟩ + M.exec (M.cs popOnce) (M.exec (n-push {id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})} (suc n)) (id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))}))) + ≡⟨ sym (exec-comp (M.cs popOnce) (n-push {id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})} (suc n)) (id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))}))) ⟩ + M.exec (M.csComp {id-meta cn ce s} (M.cs popOnce) (n-push {id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})} (suc n))) (id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})) + ≡⟨ pop-n-push n cn ce (record {top = just (cons ce (SingleLinkedStack.top s))}) ⟩ + M.exec (n-push n) (id-meta cn ce (record {top = just (cons ce (SingleLinkedStack.top s))})) + ≡⟨ refl ⟩ + M.exec (n-push n) (pushOnce (id-meta cn ce s)) + ≡⟨ refl ⟩ + M.exec (n-push n) (M.exec (M.cs pushOnce) (id-meta cn ce s)) + ≡⟨ refl ⟩ + M.exec (n-push {id-meta cn ce s} (suc n)) (id-meta cn ce s) + ∎ + + + +n-push-pop-type : ℕ -> ℕ -> ℕ -> SingleLinkedStack ℕ -> Set₁ +n-push-pop-type n cn ce st = M.exec (M.csComp {meta} (n-pop {meta} n) (n-push {meta} n)) meta ≡ meta + where + meta = id-meta cn ce st + +n-push-pop : (n cn ce : ℕ) -> (s : SingleLinkedStack ℕ) -> n-push-pop-type n cn ce s +n-push-pop zero cn ce s = refl +n-push-pop (suc n) cn ce s = begin + M.exec (M.csComp {id-meta cn ce s} (n-pop {id-meta cn ce s} (suc n)) (n-push {id-meta cn ce s} (suc n))) (id-meta cn ce s) + ≡⟨ refl ⟩ + M.exec (M.csComp {id-meta cn ce s} (M.cs (\m -> M.exec (n-pop {id-meta cn ce s} n) (popOnce m))) (n-push {id-meta cn ce s} (suc n))) (id-meta cn ce s) + ≡⟨ exec-comp (M.cs (\m -> M.exec (n-pop n) (popOnce m))) (n-push {id-meta cn ce s} (suc n)) (id-meta cn ce s) ⟩ + M.exec (M.cs (\m -> M.exec (n-pop {id-meta cn ce s} n) (popOnce m))) (M.exec (n-push {id-meta cn ce s} (suc n)) (id-meta cn ce s)) + ≡⟨ refl ⟩ + M.exec (n-pop n) (popOnce (M.exec (n-push {id-meta cn ce s} (suc n)) (id-meta cn ce s))) + ≡⟨ refl ⟩ + M.exec (n-pop n) (M.exec (M.cs popOnce) (M.exec (n-push {id-meta cn ce s} (suc n)) (id-meta cn ce s))) + ≡⟨ cong (\x -> M.exec (n-pop {id-meta cn ce s} n) x) (sym (exec-comp (M.cs popOnce) (n-push {id-meta cn ce s} (suc n)) (id-meta cn ce s))) ⟩ + M.exec (n-pop n) (M.exec (M.csComp {id-meta cn ce s} (M.cs popOnce) (n-push {id-meta cn ce s} (suc n))) (id-meta cn ce s)) + ≡⟨ cong (\x -> M.exec (n-pop {id-meta cn ce s} n) x) (pop-n-push n cn ce s) ⟩ + M.exec (n-pop n) (M.exec (n-push n) (id-meta cn ce s)) + ≡⟨ sym (exec-comp (n-pop n) (n-push n) (id-meta cn ce s)) ⟩ + M.exec (M.csComp (n-pop n) (n-push n)) (id-meta cn ce s) + ≡⟨ n-push-pop n cn ce s ⟩ + id-meta cn ce s + ∎ +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/paper/src/stack-subtype.agda Mon Feb 06 10:32:49 2017 +0900 @@ -0,0 +1,123 @@ +open import Level hiding (lift) +open import Data.Maybe +open import Data.Product +open import Data.Nat hiding (suc) +open import Function + +module stack-subtype (A : Set) where + +-- data definitions + +data Element (a : Set) : Set where + cons : a -> Maybe (Element a) -> Element a + +datum : {a : Set} -> Element a -> a +datum (cons a _) = a + +next : {a : Set} -> Element a -> Maybe (Element a) +next (cons _ n) = n + +record SingleLinkedStack (a : Set) : Set where + field + top : Maybe (Element a) +open SingleLinkedStack + +record Context : Set where + field + -- fields for concrete data segments + n : ℕ + -- fields for stack + element : Maybe A + + + + + +open import subtype Context as N + +instance + ContextIsDataSegment : N.DataSegment Context + ContextIsDataSegment = record {get = (\c -> c) ; set = (\_ c -> c)} + + +record Meta : Set₁ where + field + -- context as set of data segments + context : Context + stack : SingleLinkedStack A + nextCS : N.CodeSegment Context Context + + + + +open import subtype Meta as M + +instance + MetaIncludeContext : M.DataSegment Context + MetaIncludeContext = record { get = Meta.context + ; set = (\m c -> record m {context = c}) } + + MetaIsMetaDataSegment : M.DataSegment Meta + MetaIsMetaDataSegment = record { get = (\m -> m) ; set = (\_ m -> m) } + + +liftMeta : {X Y : Set} {{_ : M.DataSegment X}} {{_ : M.DataSegment Y}} -> N.CodeSegment X Y -> M.CodeSegment X Y +liftMeta (N.cs f) = M.cs f + +liftContext : {X Y : Set} {{_ : N.DataSegment X}} {{_ : N.DataSegment Y}} -> N.CodeSegment X Y -> N.CodeSegment Context Context +liftContext {{x}} {{y}} (N.cs f) = N.cs (\c -> N.DataSegment.set y c (f (N.DataSegment.get x c))) + +-- definition based from Gears(209:5708390a9d88) src/parallel_execution + +emptySingleLinkedStack : SingleLinkedStack A +emptySingleLinkedStack = record {top = nothing} + + +pushSingleLinkedStack : Meta -> Meta +pushSingleLinkedStack m = M.exec (liftMeta n) (record m {stack = (push s e) }) + where + n = Meta.nextCS m + s = Meta.stack m + e = Context.element (Meta.context m) + push : SingleLinkedStack A -> Maybe A -> SingleLinkedStack A + push s nothing = s + push s (just x) = record {top = just (cons x (top s))} + + + +popSingleLinkedStack : Meta -> Meta +popSingleLinkedStack m = M.exec (liftMeta n) (record m {stack = (st m) ; context = record con {element = (elem m)}}) + where + n = Meta.nextCS m + con = Meta.context m + elem : Meta -> Maybe A + elem record {stack = record { top = (just (cons x _)) }} = just x + elem record {stack = record { top = nothing }} = nothing + st : Meta -> SingleLinkedStack A + st record {stack = record { top = (just (cons _ s)) }} = record {top = s} + st record {stack = record { top = nothing }} = record {top = nothing} + + + + +pushSingleLinkedStackCS : M.CodeSegment Meta Meta +pushSingleLinkedStackCS = M.cs pushSingleLinkedStack + +popSingleLinkedStackCS : M.CodeSegment Meta Meta +popSingleLinkedStackCS = M.cs popSingleLinkedStack + + +-- for sample + +firstContext : Context +firstContext = record {element = nothing ; n = 0} + + +firstMeta : Meta +firstMeta = record { context = firstContext + ; stack = emptySingleLinkedStack + ; nextCS = (N.cs (\m -> m)) + } + + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/paper/src/subtype.agda Mon Feb 06 10:32:49 2017 +0900 @@ -0,0 +1,44 @@ +open import Level +open import Relation.Binary.PropositionalEquality + +module subtype {l : Level} (Context : Set l) where + + +record DataSegment {ll : Level} (A : Set ll) : Set (l ⊔ ll) where + field + get : Context -> A + set : Context -> A -> Context +open DataSegment + +data CodeSegment {l1 l2 : Level} (A : Set l1) (B : Set l2) : Set (l ⊔ l1 ⊔ l2) where + cs : {{_ : DataSegment A}} {{_ : DataSegment B}} -> (A -> B) -> CodeSegment A B + +goto : {l1 l2 : Level} {I : Set l1} {O : Set l2} -> CodeSegment I O -> I -> O +goto (cs b) i = b i + +exec : {l1 l2 : Level} {I : Set l1} {O : Set l2} {{_ : DataSegment I}} {{_ : DataSegment O}} + -> CodeSegment I O -> Context -> Context +exec {l} {{i}} {{o}} (cs b) c = set o c (b (get i c)) + + +comp : {con : Context} -> {l1 l2 l3 l4 : Level} + {A : Set l1} {B : Set l2} {C : Set l3} {D : Set l4} + {{_ : DataSegment A}} {{_ : DataSegment B}} {{_ : DataSegment C}} {{_ : DataSegment D}} + -> (C -> D) -> (A -> B) -> A -> D +comp {con} {{i}} {{io}} {{oi}} {{o}} g f x = g (get oi (set io con (f x))) + +csComp : {con : Context} -> {l1 l2 l3 l4 : Level} + {A : Set l1} {B : Set l2} {C : Set l3} {D : Set l4} + {{_ : DataSegment A}} {{_ : DataSegment B}} {{_ : DataSegment C}} {{_ : DataSegment D}} + -> CodeSegment C D -> CodeSegment A B -> CodeSegment A D +csComp {con} {A} {B} {C} {D} {{da}} {{db}} {{dc}} {{dd}} (cs g) (cs f) + = cs {{da}} {{dd}} (comp {con} {{da}} {{db}} {{dc}} {{dd}} g f) + + + +comp-associative : {A B C D E F : Set l} {con : Context} + {{da : DataSegment A}} {{db : DataSegment B}} {{dc : DataSegment C}} + {{dd : DataSegment D}} {{de : DataSegment E}} {{df : DataSegment F}} + -> (a : CodeSegment A B) (b : CodeSegment C D) (c : CodeSegment E F) + -> csComp {con} c (csComp {con} b a) ≡ csComp {con} (csComp {con} c b) a +comp-associative (cs _) (cs _) (cs _) = refl