view presen/index.html @ 15:1ba7fa1773d9

update
author mir3636
date Wed, 15 Feb 2017 22:07:09 +0900
parents 86f6bb9be40a
children
line wrap: on
line source

<!DOCTYPE html>

<html>
  <head>
    <title>Presentation</title>
    
    <meta charset='utf-8'>
    <script
       src='./slides.js'></script>
  </head>

  <style>
    /* Your individual styles here, or just use inline styles if that’s
    what you want. */

  </style>

  <body style='display: none'>
    <section class='slides layout-regular template-default'>

      <!-- 
           Your slides (<article>s) go here. Delete or comment out the
           slides below.
        -->
      <article>
        <h1>Implementation of CbC compiler on LLVM/clang 3.5</h1>
        <h3 class="title">Kaito Tokumori  27 Feb 2014</h3>
        <div align="right">Teacher : Shinji Kono</div>
      </article>

      <article>
        <h3>Introduction of CbC</h3>
	<ul>
          <li>CbC is programming language.
          <li>CbC stands for Continuation based C.
          <li>For pararell tasks.
          <li>For state machine.
          <li>For meta computation.
	</ul>
      </article>

      <article>
        <h3>CbC compilers</h3>
	<ul>
          <li>Micro-C
          <li>GCC
          <li>LLVM/clang  <font color="ff3300">&lt;= New!!</font>
	</ul>
      </article>

      <article>
        <h3>LLVM/clang??</h3>
	<br>
        <h3 class='yellow'>What??</h3>
	<ul>
          <li>LLVM is compiler framework.
          <li>clang is C/C++/Obj-C compiler frontend.
	</ul>
        <h3 class='yellow'>Why??</h3>
	<ul>
          <li>Apple supported.
          <li>OS X default compiler.
          <li>LLVM IR (Intermidiate Representation).
	</ul>
      </article>

      <article>
        <h3>Basic strategy of implementation</h3>
	<ul>
          <li>A code segment is implemented by normal function.
          <li>Transition is implemented by forced tail call.
          <li>Goto with environment is implemented by setjmp/longjmp.
          <li><span class='red'>Do not modify intermidiate code.</span>
	</ul>
      </article>

      <article>
        <h3>Problems</h3>
	<ul>
          <li>Code segment go-to moves between function.</li>
          <li>LLVM IR jmp instruction is limited in a function.</li>
          <li>LLVM IR can't express code segment jump...</li>
          <br>
	</ul>
	<ul class="build">
          <li>But LLVM has tail call elimination,<br>
            so there is a way to generate unlimited jmp instruction in LLVM.</li>
	</ul>
      </article>

      <article>
        <h3>Solution</h3>
        <pre>define fastcc void @factorial(i32 %x) #0 {
entry:
  <span class="red">tail</span> call <span class="red">fastcc</span> void @factorial0(i32 1, i32 %x)
  ret void
}</pre>
	<ul>
          <li>LLVM IR has call flag.
          <li>Tail and fastcc flag are enable to tail call elimination!
          <li><h3 class='yellow'>We can implement CbC compiler on LLVM!!</h3>
	</ul>
      </article>

      <article>
        <h3>Structure of LLVM/clang</h3>
	<div align="center"><img src="fig/clang_llvm_structure.svg" width="600"></div>
      </article>

      <article>
        <h3>Implementation on parser</h3>
	<div align="center"><img src="fig/clang_llvm_structure.svg" width="600"></div>
	<ul>
          <li>Code segment type</li>
          <li>Goto syntax</li>
	</ul>
      </article>

      <article>
        <h3>Implementation on parser</h3>
	<div align="center"><img src="fig/clang_llvm_structure.svg" width="600"></div>
	<ul>
          <!-- <li>Goto with environment</li> -->
          <li>Include setjmp.h always.
          <li>Generate C struct for saving environment.
          <li>Insert setjmp statement.
          <li>Generate longjmp code segment as return.
	</ul>
      </article>

      <article>
        <h3>Implementation on code generator</h3>
	<div align="center"><img src="fig/clang_llvm_structure.svg" width="600"></div>
	<ul>
          <!-- <li>Keep tail call elimination</li> -->
          <li>Enable to tailcallopt LangOption.
          <li>Add a return statement after code sgment call.
          <li>Add fastcc calling convention.
          <li>Enable to TailCallElim pass.
	</ul>
      </article>


      <article class='smaller'>
        <h3>Compiling result</h3>
          <table  border="0">
            <tbody>
              <tr>
                <td>
		  <pre>__code factorial(int x)
{
  goto factorial0(1, x);
}
</pre>
		</td>
                <td>
		  <pre>_factorial:               ## @factorial
    .cfi_startproc
## BB#0:                ## %entry
    pushq    %rbp
Ltmp12:
    .cfi_def_cfa_offset 16
Ltmp13:
    .cfi_offset %rbp, -16
    movq    %rsp, %rbp
Ltmp14:
    .cfi_def_cfa_register %rbp
    movl    $1, %eax
    movl    %edi, -4(%rbp)      ## 4-byte Spill
    movl    %eax, %edi
    movl    -4(%rbp), %esi      ## 4-byte Reload
    popq    %rbp
    <span class="red">jmp    _factorial0       ## TAILCALL</span>
    .cfi_endproc</pre>
		</td>
              </tr>
            </tbody>
          </table>
	<ul>
          <li>Jmp instructions are in assembler source.</li>
	</ul>
      </article>

      <article>
        <h3>Benchmark result</h3>
          <table  border="2" style="font-size:18pt;">
            <tbody>
              <tr>
                <td bgcolor="#8091B5"></td>
                <td style="text-align: center;">no optimized code</td>
                <td style="text-align: center;">optimized code A</td>
                <td style="text-align: center;">optimized code B</td>
              </tr>
              <tr>
                <td style="text-align: center;">Micro-C</td>
                <td style="text-align: right;">6.06 s</td>
                <td style="text-align: right;">2.21 s</td>
                <td style="text-align: right;">2.40 s</td>
              </tr>
              <!-- <tr> -->
              <!--   <td style="text-align: center;">GCC -O0</td> -->
              <!--   <td style="text-align: right;">1.59 s</td> -->
              <!--   <td style="text-align: right;">1.02 s</td> -->
              <!--   <td style="text-align: right;">0.99 s</td> -->
              <!-- </tr> -->
              <tr>
                <td style="text-align: center;">GCC -O2</td>
                <td style="text-align: right;">1.59 s</td>
                <td style="text-align: right;">1.02 s</td>
                <td style="text-align: right;">0.99 s</td>
              </tr>
              <!-- <tr> -->
              <!--   <td style="text-align: center;">LLVM -O0</td> -->
              <!--   <td style="text-align: right;">5.52 s</td> -->
              <!--   <td style="text-align: right;">3.95 s</td> -->
              <!--   <td style="text-align: right;">4.64 s</td> -->
              <!-- </tr> -->
              <tr>
                <td style="text-align: center;">LLVM -O2</td>
                <td style="text-align: right;">5.52 s</td>
                <td style="text-align: right;">3.95 s</td>
                <td style="text-align: right;">4.64 s</td>
              </tr>
            </tbody>
          </table>
	<ul>
	  <li>LLVM can compile CbC examples like other CbC compilers.</li>
	  <li>LLVM is slower than other compilers but it is not important for us.</li>
	</ul>
      </article>

      <article>
        <h3>Conclusion</h3>
	<ul>
          <li>We can use LLVM/clang to compile CbC code.</li>
          <li>We did not modify LLVM IR to implement CbC compiler.</li>
	</ul>
	<h3 class='yellow'>Future</h3>
	<ul>
          <li>Data segment interface</li>
          <li>Meta computation</li>
          <li>Dynamic rewriting of a jmp</li>
          <li>Generating specialized code</li>
	</ul>
      </article>

  </body>
</html>