view final_pre/src/NatAddSym.agda @ 7:28f900230c26

add final_pre
author ryokka
date Mon, 19 Feb 2018 23:32:24 +0900
parents
children
line wrap: on
line source

open import Relation.Binary.PropositionalEquality
open import nat
open import nat_add
open ≡-Reasoning

module nat_add_sym where

addSym : (n m : Nat) -> n + m ≡ m + n
addSym O       O   = refl
addSym O    (S m)  = cong S (addSym O m)
addSym (S n)   O   = cong S (addSym n O) 
addSym (S n) (S m) = {!!} -- 後述