Mercurial > hg > Papers > 2020 > ryokka-master
diff paper/src/stack-product.agda.replaced @ 2:c7acb9211784
add code, figure. and paper fix content
author | ryokka |
---|---|
date | Mon, 27 Jan 2020 20:41:36 +0900 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/paper/src/stack-product.agda.replaced Mon Jan 27 20:41:36 2020 +0900 @@ -0,0 +1,158 @@ +module stack-product where + +open import product +open import Data.Product +open import Data.Nat +open import Function using (id) +open import Relation.Binary.PropositionalEquality + +-- definition based from Gears(209:5708390a9d88) src/parallel_execution +goto = executeCS + +data Bool : Set where + True : Bool + False : Bool + +data Maybe (a : Set) : Set where + Nothing : Maybe a + Just : a @$\rightarrow$@ Maybe a + + +record Stack {a t : Set} (stackImpl : Set) : Set where + field + stack : stackImpl + push : CodeSegment (stackImpl @$\times$@ a @$\times$@ (CodeSegment stackImpl t)) t + pop : CodeSegment (stackImpl @$\times$@ (CodeSegment (stackImpl @$\times$@ Maybe a) t)) t + + +data Element (a : Set) : Set where + cons : a @$\rightarrow$@ Maybe (Element a) @$\rightarrow$@ Element a + +datum : {a : Set} @$\rightarrow$@ Element a @$\rightarrow$@ a +datum (cons a _) = a + +next : {a : Set} @$\rightarrow$@ Element a @$\rightarrow$@ Maybe (Element a) +next (cons _ n) = n + +record SingleLinkedStack (a : Set) : Set where + field + top : Maybe (Element a) +open SingleLinkedStack + +emptySingleLinkedStack : {a : Set} @$\rightarrow$@ SingleLinkedStack a +emptySingleLinkedStack = record {top = Nothing} + + + + +pushSingleLinkedStack : {a t : Set} @$\rightarrow$@ CodeSegment ((SingleLinkedStack a) @$\times$@ a @$\times$@ (CodeSegment (SingleLinkedStack a) t)) t +pushSingleLinkedStack = cs push + where + push : {a t : Set} @$\rightarrow$@ ((SingleLinkedStack a) @$\times$@ a @$\times$@ (CodeSegment (SingleLinkedStack a) t)) @$\rightarrow$@ t + push (stack , datum , next) = goto next stack1 + where + element = cons datum (top stack) + stack1 = record {top = Just element} + +popSingleLinkedStack : {a t : Set} @$\rightarrow$@ CodeSegment (SingleLinkedStack a @$\times$@ (CodeSegment (SingleLinkedStack a @$\times$@ Maybe a) t)) t +popSingleLinkedStack = cs pop + where + pop : {a t : Set} @$\rightarrow$@ (SingleLinkedStack a @$\times$@ (CodeSegment (SingleLinkedStack a @$\times$@ Maybe a) t)) @$\rightarrow$@ t + pop (record { top = Nothing } , nextCS) = goto nextCS (emptySingleLinkedStack , Nothing) + pop (record { top = Just x } , nextCS) = goto nextCS (stack1 , (Just datum1)) + where + datum1 = datum x + stack1 = record { top = (next x) } + + + + + +createSingleLinkedStack : {a b : Set} @$\rightarrow$@ Stack {a} {b} (SingleLinkedStack a) +createSingleLinkedStack = record { stack = emptySingleLinkedStack + ; push = pushSingleLinkedStack + ; pop = popSingleLinkedStack + } + + + + +test01 : {a : Set} @$\rightarrow$@ CodeSegment (SingleLinkedStack a @$\times$@ Maybe a) Bool +test01 = cs test01' + where + test01' : {a : Set} @$\rightarrow$@ (SingleLinkedStack a @$\times$@ Maybe a) @$\rightarrow$@ Bool + test01' (record { top = Nothing } , _) = False + test01' (record { top = Just x } , _) = True + + +test02 : {a : Set} @$\rightarrow$@ CodeSegment (SingleLinkedStack a) (SingleLinkedStack a @$\times$@ Maybe a) +test02 = cs test02' + where + test02' : {a : Set} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ (SingleLinkedStack a @$\times$@ Maybe a) + test02' stack = goto popSingleLinkedStack (stack , (cs id)) + + +test03 : {a : Set} @$\rightarrow$@ CodeSegment a (SingleLinkedStack a) +test03 = cs test03' + where + test03' : {a : Set} @$\rightarrow$@ a @$\rightarrow$@ SingleLinkedStack a + test03' a = goto pushSingleLinkedStack (emptySingleLinkedStack , a , (cs id)) + + +lemma : {A : Set} {a : A} @$\rightarrow$@ goto (test03 ◎ test02 ◎ test01) a @$\equiv$@ False +lemma = refl + + +n-push : {A : Set} {a : A} @$\rightarrow$@ CodeSegment (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) +n-push {A} {a} = cs (push {A} {a}) + where + push : {A : Set} {a : A} @$\rightarrow$@ (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) @$\rightarrow$@ (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) + push {A} {a} (zero , s) = (zero , s) + push {A} {a} (suc n , s) = goto pushSingleLinkedStack (s , a , {!!} {- n-push -}) -- needs subtype + + +{- + +n-push : {A : Set} {a : A} @$\rightarrow$@ Nat @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A +n-push zero s = s +n-push {A} {a} (suc n) s = pushSingleLinkedStack (n-push {A} {a} n s) a (\s @$\rightarrow$@ s) + +n-pop : {A : Set} {a : A} @$\rightarrow$@ Nat @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A +n-pop zero s = s +n-pop {A} {a} (suc n) s = popSingleLinkedStack (n-pop {A} {a} n s) (\s _ @$\rightarrow$@ s) + +open @$\equiv$@-Reasoning + +push-pop-equiv : {A : Set} {a : A} (s : SingleLinkedStack A) @$\rightarrow$@ popSingleLinkedStack (pushSingleLinkedStack s a (\s @$\rightarrow$@ s)) (\s _ @$\rightarrow$@ s) @$\equiv$@ s +push-pop-equiv s = refl + +push-and-n-pop : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) @$\rightarrow$@ n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id) @$\equiv$@ n-pop {A} {a} n s +push-and-n-pop zero s = refl +push-and-n-pop {A} {a} (suc n) s = begin + n-pop (suc (suc n)) (pushSingleLinkedStack s a id) + @$\equiv$@@$\langle$@ refl @$\rangle$@ + popSingleLinkedStack (n-pop (suc n) (pushSingleLinkedStack s a id)) (\s _ @$\rightarrow$@ s) + @$\equiv$@@$\langle$@ cong (\s @$\rightarrow$@ popSingleLinkedStack s (\s _ @$\rightarrow$@ s)) (push-and-n-pop n s) @$\rangle$@ + popSingleLinkedStack (n-pop n s) (\s _ @$\rightarrow$@ s) + @$\equiv$@@$\langle$@ refl @$\rangle$@ + n-pop (suc n) s + @$\blacksquare$@ + + +n-push-pop-equiv : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) @$\rightarrow$@ (n-pop {A} {a} n (n-push {A} {a} n s)) @$\equiv$@ s +n-push-pop-equiv zero s = refl +n-push-pop-equiv {A} {a} (suc n) s = begin + n-pop (suc n) (n-push (suc n) s) + @$\equiv$@@$\langle$@ refl @$\rangle$@ + n-pop (suc n) (pushSingleLinkedStack (n-push n s) a (\s @$\rightarrow$@ s)) + @$\equiv$@@$\langle$@ push-and-n-pop n (n-push n s) @$\rangle$@ + n-pop n (n-push n s) + @$\equiv$@@$\langle$@ n-push-pop-equiv n s @$\rangle$@ + s + @$\blacksquare$@ + + +n-push-pop-equiv-empty : {A : Set} {a : A} @$\rightarrow$@ (n : Nat) @$\rightarrow$@ n-pop {A} {a} n (n-push {A} {a} n emptySingleLinkedStack) @$\equiv$@ emptySingleLinkedStack +n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack +-} +