Mercurial > hg > Papers > 2020 > ryokka-master
view paper/src/agda-term.agda @ 19:046b2b20d6c7 default tip
fix
author | ryokka |
---|---|
date | Mon, 09 Mar 2020 11:25:49 +0900 |
parents | |
children |
line wrap: on
line source
module agda-term where open import Data.Nat.Base open import Relation.Binary.PropositionalEquality +zero : {y : ℕ} → y + zero ≡ y +zero {zero} = refl +zero {suc y} = cong (λ yy → suc yy) (+zero {y}) +-suc : {x y : ℕ} → x + suc y ≡ suc (x + y) +-suc {zero} {y} = refl +-suc {suc x} {y} = cong suc (+-suc {x} {y}) +-comm : (x y : ℕ) → x + y ≡ y + x +-comm zero y rewrite (+zero {y}) = refl +-comm (suc x) y = let open ≡-Reasoning in begin suc (x + y) ≡⟨⟩ suc (x + y) ≡⟨ cong suc (+-comm x y) ⟩ suc (y + x) ≡⟨ sym (+-suc {y} {x}) ⟩ y + suc x ∎ +-come : (x y : ℕ) → x + y ≡ y + x +-come zero y rewrite (+zero {y}) = refl +-come (suc x) y rewrite (cong suc (+-come x y)) | sym (+-suc {y} {x}) = refl