Mercurial > hg > Papers > 2020 > ryokka-master
view paper/src/stackTest.agda.replaced @ 19:046b2b20d6c7 default tip
fix
author | ryokka |
---|---|
date | Mon, 09 Mar 2020 11:25:49 +0900 |
parents | c7acb9211784 |
children |
line wrap: on
line source
open import Level renaming (suc to succ ; zero to Zero ) module stackTest where open import stack open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Data.Nat open import Function open SingleLinkedStack open Stack ---- -- -- proof of properties ( concrete cases ) -- test01 : {n : Level } {a : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ Maybe a @$\rightarrow$@ Bool {n} test01 stack _ with (top stack) ... | (Just _) = True ... | Nothing = False test02 : {n : Level } {a : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ Bool test02 stack = popSingleLinkedStack stack test01 test03 : {n : Level } {a : Set n} @$\rightarrow$@ a @$\rightarrow$@ Bool test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02 -- after a push and a pop, the stack is empty lemma : {n : Level} {A : Set n} {a : A} @$\rightarrow$@ test03 a @$\equiv$@ False lemma = refl testStack01 : {n m : Level } {a : Set n} @$\rightarrow$@ a @$\rightarrow$@ Bool {m} testStack01 v = pushStack createSingleLinkedStack v ( \s @$\rightarrow$@ popStack s (\s1 d1 @$\rightarrow$@ True)) -- after push 1 and 2, pop2 get 1 and 2 testStack02 : {m : Level } @$\rightarrow$@ ( Stack @$\mathbb{N}$@ (SingleLinkedStack @$\mathbb{N}$@) @$\rightarrow$@ Bool {m} ) @$\rightarrow$@ Bool {m} testStack02 cs = pushStack createSingleLinkedStack 1 ( \s @$\rightarrow$@ pushStack s 2 cs) testStack031 : (d1 d2 : @$\mathbb{N}$@ ) @$\rightarrow$@ Bool {Zero} testStack031 2 1 = True testStack031 _ _ = False testStack032 : (d1 d2 : Maybe @$\mathbb{N}$@) @$\rightarrow$@ Bool {Zero} testStack032 (Just d1) (Just d2) = testStack031 d1 d2 testStack032 _ _ = False testStack03 : {m : Level } @$\rightarrow$@ Stack @$\mathbb{N}$@ (SingleLinkedStack @$\mathbb{N}$@) @$\rightarrow$@ ((Maybe @$\mathbb{N}$@) @$\rightarrow$@ (Maybe @$\mathbb{N}$@) @$\rightarrow$@ Bool {m} ) @$\rightarrow$@ Bool {m} testStack03 s cs = pop2Stack s ( \s d1 d2 @$\rightarrow$@ cs d1 d2 ) testStack04 : Bool testStack04 = testStack02 (\s @$\rightarrow$@ testStack03 s testStack032) testStack05 : testStack04 @$\equiv$@ True testStack05 = refl testStack06 : {m : Level } @$\rightarrow$@ Maybe (Element @$\mathbb{N}$@) testStack06 = pushStack createSingleLinkedStack 1 ( \s @$\rightarrow$@ pushStack s 2 (\s @$\rightarrow$@ top (stack s))) testStack07 : {m : Level } @$\rightarrow$@ Maybe (Element @$\mathbb{N}$@) testStack07 = pushSingleLinkedStack emptySingleLinkedStack 1 ( \s @$\rightarrow$@ pushSingleLinkedStack s 2 (\s @$\rightarrow$@ top s)) testStack08 = pushSingleLinkedStack emptySingleLinkedStack 1 $ \s @$\rightarrow$@ pushSingleLinkedStack s 2 $ \s @$\rightarrow$@ pushSingleLinkedStack s 3 $ \s @$\rightarrow$@ pushSingleLinkedStack s 4 $ \s @$\rightarrow$@ pushSingleLinkedStack s 5 $ \s @$\rightarrow$@ top s ------ -- -- proof of properties with indefinite state of stack -- -- this should be proved by properties of the stack inteface, not only by the implementation, -- and the implementation have to provides the properties. -- -- we cannot write "s @$\equiv$@ s3", since level of the Set does not fit , but use stack s @$\equiv$@ stack s3 is ok. -- anyway some implementations may result s != s3 -- stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) @$\rightarrow$@ Stack {l} {m} D {t} ( SingleLinkedStack D ) stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec } push@$\rightarrow$@push@$\rightarrow$@pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) @$\rightarrow$@ pushStack ( stackInSomeState s ) x ( \s1 @$\rightarrow$@ pushStack s1 y ( \s2 @$\rightarrow$@ pop2Stack s2 ( \s3 y1 x1 @$\rightarrow$@ (Just x @$\equiv$@ x1 ) @$\wedge$@ (Just y @$\equiv$@ y1 ) ) )) push@$\rightarrow$@push@$\rightarrow$@pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl } -- id : {n : Level} {A : Set n} @$\rightarrow$@ A @$\rightarrow$@ A -- id a = a -- push a, n times n-push : {n : Level} {A : Set n} {a : A} @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A n-push zero s = s n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s @$\rightarrow$@ s ) n-pop : {n : Level}{A : Set n} {a : A} @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A n-pop zero s = s n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ @$\rightarrow$@ s ) open @$\equiv$@-Reasoning push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) @$\rightarrow$@ (popSingleLinkedStack (pushSingleLinkedStack s a (\s @$\rightarrow$@ s)) (\s _ @$\rightarrow$@ s) ) @$\equiv$@ s push-pop-equiv s = refl push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : @$\mathbb{N}$@) (s : SingleLinkedStack A) @$\rightarrow$@ n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) @$\equiv$@ n-pop {_} {A} {a} n s push-and-n-pop zero s = refl push-and-n-pop {_} {A} {a} (suc n) s = begin n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) @$\equiv$@@$\langle$@ refl @$\rangle$@ popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ @$\rightarrow$@ s) @$\equiv$@@$\langle$@ cong (\s @$\rightarrow$@ popSingleLinkedStack s (\s _ @$\rightarrow$@ s )) (push-and-n-pop n s) @$\rangle$@ popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ @$\rightarrow$@ s) @$\equiv$@@$\langle$@ refl @$\rangle$@ n-pop {_} {A} {a} (suc n) s @$\blacksquare$@ n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : @$\mathbb{N}$@) (s : SingleLinkedStack A) @$\rightarrow$@ (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) @$\equiv$@ s n-push-pop-equiv zero s = refl n-push-pop-equiv {_} {A} {a} (suc n) s = begin n-pop {_} {A} {a} (suc n) (n-push (suc n) s) @$\equiv$@@$\langle$@ refl @$\rangle$@ n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s @$\rightarrow$@ s)) @$\equiv$@@$\langle$@ push-and-n-pop n (n-push n s) @$\rangle$@ n-pop {_} {A} {a} n (n-push n s) @$\equiv$@@$\langle$@ n-push-pop-equiv n s @$\rangle$@ s @$\blacksquare$@ n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} @$\rightarrow$@ (n : @$\mathbb{N}$@) @$\rightarrow$@ n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) @$\equiv$@ emptySingleLinkedStack n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack