Mercurial > hg > Papers > 2020 > ryokka-master
view paper/src/utilities.agda.replaced @ 19:046b2b20d6c7 default tip
fix
author | ryokka |
---|---|
date | Mon, 09 Mar 2020 11:25:49 +0900 |
parents | |
children |
line wrap: on
line source
{-@$\#$@ OPTIONS --allow-unsolved-metas @$\#$@-} module utilities where open import Function open import Data.Nat open import Data.Product open import Data.Bool hiding ( _≟_ ; _@$\leq$@?_) open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (@$\neg$@_; Dec; yes; no) open import Relation.Binary.PropositionalEquality Pred : Set @$\rightarrow$@ Set@$\_{1}$@ Pred X = X @$\rightarrow$@ Set Imply : Set @$\rightarrow$@ Set @$\rightarrow$@ Set Imply X Y = X @$\rightarrow$@ Y Iff : Set @$\rightarrow$@ Set @$\rightarrow$@ Set Iff X Y = Imply X Y @$\times$@ Imply Y X record _@$\wedge$@_ {n : Level } (a : Set n) (b : Set n): Set n where field pi1 : a pi2 : b open _@$\wedge$@_ _-_ : @$\mathbb{N}$@ @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ @$\mathbb{N}$@ x - zero = x zero - _ = zero (suc x) - (suc y) = x - y +zero : { y : @$\mathbb{N}$@ } @$\rightarrow$@ y + zero @$\equiv$@ y +zero {zero} = refl +zero {suc y} = cong ( @$\lambda$@ x @$\rightarrow$@ suc x ) ( +zero {y} ) +-sym : { x y : @$\mathbb{N}$@ } @$\rightarrow$@ x + y @$\equiv$@ y + x +-sym {zero} {zero} = refl +-sym {zero} {suc y} = let open @$\equiv$@-Reasoning in begin zero + suc y @$\equiv$@@$\langle$@@$\rangle$@ suc y @$\equiv$@@$\langle$@ sym +zero @$\rangle$@ suc y + zero @$\blacksquare$@ +-sym {suc x} {zero} = let open @$\equiv$@-Reasoning in begin suc x + zero @$\equiv$@@$\langle$@ +zero @$\rangle$@ suc x @$\equiv$@@$\langle$@@$\rangle$@ zero + suc x @$\blacksquare$@ +-sym {suc x} {suc y} = cong ( @$\lambda$@ z @$\rightarrow$@ suc z ) ( let open @$\equiv$@-Reasoning in begin x + suc y @$\equiv$@@$\langle$@ +-sym {x} {suc y} @$\rangle$@ suc (y + x) @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ suc z ) (+-sym {y} {x}) @$\rangle$@ suc (x + y) @$\equiv$@@$\langle$@ sym ( +-sym {y} {suc x}) @$\rangle$@ y + suc x @$\blacksquare$@ ) minus-plus : { x y : @$\mathbb{N}$@ } @$\rightarrow$@ (suc x - 1) + (y + 1) @$\equiv$@ suc x + y minus-plus {zero} {y} = +-sym {y} {1} minus-plus {suc x} {y} = cong ( @$\lambda$@ z @$\rightarrow$@ suc z ) (minus-plus {x} {y}) +1@$\equiv$@suc : { x : @$\mathbb{N}$@ } @$\rightarrow$@ x + 1 @$\equiv$@ suc x +1@$\equiv$@suc {zero} = refl +1@$\equiv$@suc {suc x} = cong ( @$\lambda$@ z @$\rightarrow$@ suc z ) ( +1@$\equiv$@suc {x} ) lt : @$\mathbb{N}$@ @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ Bool lt x y with (suc x ) @$\leq$@? y lt x y | yes p = true lt x y | no @$\neg$@p = false pred@$\mathbb{N}$@ : {n : @$\mathbb{N}$@ } @$\rightarrow$@ lt 0 n @$\equiv$@ true @$\rightarrow$@ @$\mathbb{N}$@ pred@$\mathbb{N}$@ {zero} () pred@$\mathbb{N}$@ {suc n} refl = n pred@$\mathbb{N}$@+1=n : {n : @$\mathbb{N}$@ } @$\rightarrow$@ (less : lt 0 n @$\equiv$@ true ) @$\rightarrow$@ (pred@$\mathbb{N}$@ less) + 1 @$\equiv$@ n pred@$\mathbb{N}$@+1=n {zero} () pred@$\mathbb{N}$@+1=n {suc n} refl = +1@$\equiv$@suc suc-pred@$\mathbb{N}$@=n : {n : @$\mathbb{N}$@ } @$\rightarrow$@ (less : lt 0 n @$\equiv$@ true ) @$\rightarrow$@ suc (pred@$\mathbb{N}$@ less) @$\equiv$@ n suc-pred@$\mathbb{N}$@=n {zero} () suc-pred@$\mathbb{N}$@=n {suc n} refl = refl Equal : @$\mathbb{N}$@ @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ Bool Equal x y with x ≟ y Equal x y | yes p = true Equal x y | no @$\neg$@p = false _@$\Rightarrow$@_ : Bool @$\rightarrow$@ Bool @$\rightarrow$@ Bool false @$\Rightarrow$@ _ = true true @$\Rightarrow$@ true = true true @$\Rightarrow$@ false = false @$\Rightarrow$@t : {x : Bool} @$\rightarrow$@ x @$\Rightarrow$@ true @$\equiv$@ true @$\Rightarrow$@t {x} with x @$\Rightarrow$@t {x} | false = refl @$\Rightarrow$@t {x} | true = refl f@$\Rightarrow$@ : {x : Bool} @$\rightarrow$@ false @$\Rightarrow$@ x @$\equiv$@ true f@$\Rightarrow$@ {x} with x f@$\Rightarrow$@ {x} | false = refl f@$\Rightarrow$@ {x} | true = refl @$\wedge$@-pi1 : { x y : Bool } @$\rightarrow$@ x @$\wedge$@ y @$\equiv$@ true @$\rightarrow$@ x @$\equiv$@ true @$\wedge$@-pi1 {x} {y} eq with x | y | eq @$\wedge$@-pi1 {x} {y} eq | false | b | () @$\wedge$@-pi1 {x} {y} eq | true | false | () @$\wedge$@-pi1 {x} {y} eq | true | true | refl = refl @$\wedge$@-pi2 : { x y : Bool } @$\rightarrow$@ x @$\wedge$@ y @$\equiv$@ true @$\rightarrow$@ y @$\equiv$@ true @$\wedge$@-pi2 {x} {y} eq with x | y | eq @$\wedge$@-pi2 {x} {y} eq | false | b | () @$\wedge$@-pi2 {x} {y} eq | true | false | () @$\wedge$@-pi2 {x} {y} eq | true | true | refl = refl @$\wedge$@true : { x : Bool } @$\rightarrow$@ x @$\wedge$@ true @$\equiv$@ x @$\wedge$@true {x} with x @$\wedge$@true {x} | false = refl @$\wedge$@true {x} | true = refl true@$\wedge$@ : { x : Bool } @$\rightarrow$@ true @$\wedge$@ x @$\equiv$@ x true@$\wedge$@ {x} with x true@$\wedge$@ {x} | false = refl true@$\wedge$@ {x} | true = refl bool-case : ( x : Bool ) { p : Set } @$\rightarrow$@ ( x @$\equiv$@ true @$\rightarrow$@ p ) @$\rightarrow$@ ( x @$\equiv$@ false @$\rightarrow$@ p ) @$\rightarrow$@ p bool-case x T F with x bool-case x T F | false = F refl bool-case x T F | true = T refl impl@$\Rightarrow$@ : {x y : Bool} @$\rightarrow$@ (x @$\equiv$@ true @$\rightarrow$@ y @$\equiv$@ true ) @$\rightarrow$@ x @$\Rightarrow$@ y @$\equiv$@ true impl@$\Rightarrow$@ {x} {y} p = bool-case x (@$\lambda$@ x=t @$\rightarrow$@ let open @$\equiv$@-Reasoning in begin x @$\Rightarrow$@ y @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ x @$\Rightarrow$@ z ) (p x=t ) @$\rangle$@ x @$\Rightarrow$@ true @$\equiv$@@$\langle$@ @$\Rightarrow$@t @$\rangle$@ true @$\blacksquare$@ ) ( @$\lambda$@ x=f @$\rightarrow$@ let open @$\equiv$@-Reasoning in begin x @$\Rightarrow$@ y @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ z @$\Rightarrow$@ y ) x=f @$\rangle$@ true @$\blacksquare$@ ) Equal@$\rightarrow$@@$\equiv$@ : { x y : @$\mathbb{N}$@ } @$\rightarrow$@ Equal x y @$\equiv$@ true @$\rightarrow$@ x @$\equiv$@ y Equal@$\rightarrow$@@$\equiv$@ {x} {y} eq with x ≟ y Equal@$\rightarrow$@@$\equiv$@ {x} {y} refl | yes refl = refl Equal@$\rightarrow$@@$\equiv$@ {x} {y} () | no @$\neg$@p open import Data.Empty @$\equiv$@@$\rightarrow$@Equal : { x y : @$\mathbb{N}$@ } @$\rightarrow$@ x @$\equiv$@ y @$\rightarrow$@ Equal x y @$\equiv$@ true @$\equiv$@@$\rightarrow$@Equal {x} {.x} refl with x ≟ x @$\equiv$@@$\rightarrow$@Equal {x} {.x} refl | yes refl = refl @$\equiv$@@$\rightarrow$@Equal {x} {.x} refl | no @$\neg$@p = @$\bot$@-elim ( @$\neg$@p refl )