Mercurial > hg > Papers > 2020 > ryokka-master
view paper/src/whileTestGears.agda @ 19:046b2b20d6c7 default tip
fix
author | ryokka |
---|---|
date | Mon, 09 Mar 2020 11:25:49 +0900 |
parents | |
children |
line wrap: on
line source
module whileTestGears where open import Function open import Data.Nat open import Data.Bool hiding ( _≟_ ; _≤?_ ; _≤_ ; _<_) open import Data.Product open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality open import Agda.Builtin.Unit open import utilities open _/\_ -- original codeGear (with non terminatinng ) record Env : Set (succ Zero) where field varn : ℕ vari : ℕ open Env whileTest : {l : Level} {t : Set l} → (c10 : ℕ) → (Code : Env → t) → t whileTest c10 next = next (record {varn = c10 ; vari = 0 } ) {-# TERMINATING #-} whileLoop : {l : Level} {t : Set l} → Env → (Code : Env → t) → t whileLoop env next with lt 0 (varn env) whileLoop env next | false = next env whileLoop env next | true = whileLoop (record env {varn = (varn env) - 1 ; vari = (vari env) + 1}) next test1 : Env test1 = whileTest 10 (λ env → whileLoop env (λ env1 → env1 )) proof1 : whileTest 10 (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) proof1 = refl -- codeGear with pre-condtion and post-condition -- -- ↓PostCondition whileTest' : {l : Level} {t : Set l} → {c10 : ℕ } → (Code : (env : Env ) → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → t) → t whileTest' {_} {_} {c10} next = next env proof2 where env : Env env = record {vari = 0 ; varn = c10 } proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -- PostCondition proof2 = record {pi1 = refl ; pi2 = refl} open import Data.Empty open import Data.Nat.Properties {-# TERMINATING #-} -- ↓PreCondition(Invaliant) whileLoop' : {l : Level} {t : Set l} → (env : Env ) → {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) → (Code : Env → t) → t whileLoop' env proof next with ( suc zero ≤? (varn env) ) whileLoop' env proof next | no p = next env whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next where env1 = record env {varn = (varn env) - 1 ; vari = (vari env) + 1} 1<0 : 1 ≤ zero → ⊥ 1<0 () proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 proof3 (s≤s lt) with varn env proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in begin n' + (vari env + 1) ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ n' + (1 + vari env ) ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ (n' + 1) + vari env ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ (suc n' ) + vari env ≡⟨⟩ varn env + vari env ≡⟨ proof ⟩ c10 ∎ -- Condition to Invariant conversion1 : {l : Level} {t : Set l } → (env : Env ) → {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → (Code : (env1 : Env ) → (varn env1 + vari env1 ≡ c10) → t) → t conversion1 env {c10} p1 next = next env proof4 where proof4 : varn env + vari env ≡ c10 proof4 = let open ≡-Reasoning in begin varn env + vari env ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ c10 + vari env ≡⟨ cong ( λ n → c10 + n ) (pi1 p1 ) ⟩ c10 + 0 ≡⟨ +-sym {c10} {0} ⟩ c10 ∎ -- all proofs are connected proofGears : {c10 : ℕ } → Set proofGears {c10} = whileTest' {_} {_} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ c10 )))) -- -- codeGear with loop step and closed environment -- open import Relation.Binary record Envc : Set (succ Zero) where field c10 : ℕ varn : ℕ vari : ℕ open Envc whileTestP : {l : Level} {t : Set l} → (c10 : ℕ) → (Code : Envc → t) → t whileTestP c10 next = next (record {varn = c10 ; vari = 0 ; c10 = c10 } ) whileLoopP : {l : Level} {t : Set l} → Envc → (next : Envc → t) → (exit : Envc → t) → t whileLoopP env next exit with <-cmp 0 (varn env) whileLoopP env next exit | tri≈ ¬a b ¬c = exit env whileLoopP env next exit | tri< a ¬b ¬c = next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) -- equivalent of whileLoopP but it looks like an induction on varn whileLoopP' : {l : Level} {t : Set l} → (n : ℕ) → (env : Envc) → (n ≡ varn env) → (next : Envc → t) → (exit : Envc → t) → t whileLoopP' zero env refl _ exit = exit env whileLoopP' (suc n) env refl next _ = next (record {c10 = (c10 env) ; varn = varn env ; vari = suc (vari env) }) -- normal loop without termination {-# TERMINATING #-} loopP : {l : Level} {t : Set l} → Envc → (exit : Envc → t) → t loopP env exit = whileLoopP env (λ env → loopP env exit ) exit whileTestPCall : (c10 : ℕ ) → Envc whileTestPCall c10 = whileTestP {_} {_} c10 (λ env → loopP env (λ env → env)) -- -- codeGears with states of condition -- data whileTestState : Set where s1 : whileTestState s2 : whileTestState sf : whileTestState whileTestStateP : whileTestState → Envc → Set whileTestStateP s1 env = (vari env ≡ 0) /\ (varn env ≡ c10 env) whileTestStateP s2 env = (varn env + vari env ≡ c10 env) whileTestStateP sf env = (vari env ≡ c10 env) whileTestPwP : {l : Level} {t : Set l} → (c10 : ℕ) → ((env : Envc ) → whileTestStateP s1 env → t) → t whileTestPwP c10 next = next env record { pi1 = refl ; pi2 = refl } where env : Envc env = whileTestP c10 ( λ env → env ) whileLoopPwP : {l : Level} {t : Set l} → (env : Envc ) → whileTestStateP s2 env → (next : (env : Envc ) → whileTestStateP s2 env → t) → (exit : (env : Envc ) → whileTestStateP sf env → t) → t whileLoopPwP env s next exit with <-cmp 0 (varn env) whileLoopPwP env s next exit | tri≈ ¬a b ¬c = exit env (lem (sym b) s) where lem : (varn env ≡ 0) → (varn env + vari env ≡ c10 env) → vari env ≡ c10 env lem refl refl = refl whileLoopPwP env s next exit | tri< a ¬b ¬c = next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) (proof5 a) where 1<0 : 1 ≤ zero → ⊥ 1<0 () proof5 : (suc zero ≤ (varn env)) → (varn env - 1) + (vari env + 1) ≡ c10 env proof5 (s≤s lt) with varn env proof5 (s≤s z≤n) | zero = ⊥-elim (1<0 a) proof5 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in begin n' + (vari env + 1) ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ n' + (1 + vari env ) ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ (n' + 1) + vari env ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ (suc n' ) + vari env ≡⟨⟩ varn env + vari env ≡⟨ s ⟩ c10 env ∎ whileLoopPwP' : {l : Level} {t : Set l} → (n : ℕ) → (env : Envc ) → (n ≡ varn env) → whileTestStateP s2 env → (next : (env : Envc ) → (pred n ≡ varn env) → whileTestStateP s2 env → t) → (exit : (env : Envc ) → whileTestStateP sf env → t) → t whileLoopPwP' zero env refl refl next exit = exit env refl whileLoopPwP' (suc n) env refl refl next exit = next (record env {varn = pred (varn env) ; vari = suc (vari env) }) refl (+-suc n (vari env)) {-# TERMINATING #-} loopPwP : {l : Level} {t : Set l} → (env : Envc ) → whileTestStateP s2 env → (exit : (env : Envc ) → whileTestStateP sf env → t) → t loopPwP env s exit = whileLoopPwP env s (λ env s → loopPwP env s exit ) exit loopPwP' : {l : Level} {t : Set l} → (n : ℕ) → (env : Envc ) → (n ≡ varn env) → whileTestStateP s2 env → (exit : (env : Envc ) → whileTestStateP sf env → t) → t loopPwP' zero env refl refl exit = exit env refl loopPwP' (suc n) env refl refl exit = whileLoopPwP' (suc n) env refl refl (λ env x y → loopPwP' n env x y exit) exit loopHelper : (n : ℕ) → (env : Envc ) → (eq : varn env ≡ n) → (seq : whileTestStateP s2 env) → loopPwP' n env (sym eq) seq λ env₁ x → (vari env₁ ≡ c10 env₁) loopHelper zero env eq refl rewrite eq = refl loopHelper (suc n) env eq refl rewrite eq = loopHelper n (record { c10 = suc (n + vari env) ; varn = n ; vari = suc (vari env) }) refl (+-suc n (vari env)) -- all codtions are correctly connected and required condtion is proved in the continuation -- use required condition as t in (env → t) → t -- whileTestPCallwP : (c : ℕ ) → Set whileTestPCallwP c = whileTestPwP {_} {_} c ( λ env s → loopPwP env (conv env s) ( λ env s → vari env ≡ c10 env ) ) where conv : (env : Envc ) → (vari env ≡ 0) /\ (varn env ≡ c10 env) → varn env + vari env ≡ c10 env conv e record { pi1 = refl ; pi2 = refl } = +zero whileTestPCallwP' : (c : ℕ ) → Set whileTestPCallwP' c = whileTestPwP {_} {_} c (λ env s → loopPwP' (varn env) env refl (conv env s) ( λ env s → vari env ≡ c10 env ) ) where conv : (env : Envc ) → (vari env ≡ 0) /\ (varn env ≡ c10 env) → varn env + vari env ≡ c10 env conv e record { pi1 = refl ; pi2 = refl } = +zero helperCallwP : (c : ℕ) → whileTestPCallwP' c helperCallwP c = whileTestPwP {_} {_} c (λ env s → loopHelper c (record { c10 = c ; varn = c ; vari = zero }) refl +zero) -- -- Using imply relation to make soundness explicit -- termination is shown by induction on varn -- data _implies_ (A B : Set ) : Set (succ Zero) where proof : ( A → B ) → A implies B whileTestPSem : (c : ℕ) → whileTestP c ( λ env → ⊤ implies (whileTestStateP s1 env) ) whileTestPSem c = proof ( λ _ → record { pi1 = refl ; pi2 = refl } ) whileTestPSemSound : (c : ℕ ) (output : Envc ) → output ≡ whileTestP c (λ e → e) → ⊤ implies ((vari output ≡ 0) /\ (varn output ≡ c)) whileTestPSemSound c output refl = whileTestPSem c whileConvPSemSound : {l : Level} → (input : Envc) → (whileTestStateP s1 input ) implies (whileTestStateP s2 input) whileConvPSemSound input = proof λ x → (conv input x) where conv : (env : Envc ) → (vari env ≡ 0) /\ (varn env ≡ c10 env) → varn env + vari env ≡ c10 env conv e record { pi1 = refl ; pi2 = refl } = +zero loopPP : (n : ℕ) → (input : Envc ) → (n ≡ varn input) → Envc loopPP zero input refl = input loopPP (suc n) input refl = loopPP n (record input { varn = pred (varn input) ; vari = suc (vari input)}) refl whileLoopPSem : {l : Level} {t : Set l} → (input : Envc ) → whileTestStateP s2 input → (next : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP s2 output) → t) → (exit : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP sf output) → t) → t whileLoopPSem env s next exit with varn env | s ... | zero | _ = exit env (proof (λ z → z)) ... | (suc varn ) | refl = next ( record env { varn = varn ; vari = suc (vari env) } ) (proof λ x → +-suc varn (vari env) ) loopPPSem : (input output : Envc ) → output ≡ loopPP (varn input) input refl → (whileTestStateP s2 input ) → (whileTestStateP s2 input ) implies (whileTestStateP sf output) loopPPSem input output refl s2p = loopPPSemInduct (varn input) input refl refl s2p where lem : (n : ℕ) → (env : Envc) → n + suc (vari env) ≡ suc (n + vari env) lem n env = +-suc (n) (vari env) loopPPSemInduct : (n : ℕ) → (current : Envc) → (eq : n ≡ varn current) → (loopeq : output ≡ loopPP n current eq) → (whileTestStateP s2 current ) → (whileTestStateP s2 current ) implies (whileTestStateP sf output) loopPPSemInduct zero current refl loopeq refl rewrite loopeq = proof (λ x → refl) loopPPSemInduct (suc n) current refl loopeq refl rewrite (sym (lem n current)) = whileLoopPSem current refl (λ output x → loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) (λ output x → loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) whileLoopPSemSound : {l : Level} → (input output : Envc ) → whileTestStateP s2 input → output ≡ loopPP (varn input) input refl → (whileTestStateP s2 input ) implies ( whileTestStateP sf output ) whileLoopPSemSound {l} input output pre eq = loopPPSem input output eq pre