Mercurial > hg > Papers > 2020 > ryokka-master
view paper/src/whileTestProof.agda @ 19:046b2b20d6c7 default tip
fix
author | ryokka |
---|---|
date | Mon, 09 Mar 2020 11:25:49 +0900 |
parents | |
children |
line wrap: on
line source
module whileTestProof where -- -- Using imply relation to make soundness explicit -- termination is shown by induction on varn -- data _implies_ (A B : Set ) : Set (succ Zero) where proof : ( A → B ) → A implies B implies2p : {A B : Set } → A implies B → A → B implies2p (proof x) = x whileTestPSem : (c : ℕ) → whileTestP c ( λ env → ⊤ implies (whileTestStateP s1 env) ) whileTestPSem c = proof ( λ _ → record { pi1 = refl ; pi2 = refl } ) SemGears : (f : {l : Level } {t : Set l } → (e0 : Envc ) → ((e : Envc) → t) → t ) → Set (succ Zero) SemGears f = Envc → Envc → Set GearsUnitSound : (e0 e1 : Envc) {pre : Envc → Set} {post : Envc → Set} → (f : {l : Level } {t : Set l } → (e0 : Envc ) → (Envc → t) → t ) → (fsem : (e0 : Envc ) → f e0 ( λ e1 → (pre e0) implies (post e1))) → f e0 (λ e1 → pre e0 implies post e1) GearsUnitSound e0 e1 f fsem = fsem e0 whileTestPSemSound : (c : ℕ ) (output : Envc ) → output ≡ whileTestP c (λ e → e) → ⊤ implies ((vari output ≡ 0) /\ (varn output ≡ c)) whileTestPSemSound c output refl = proof (λ x → record { pi1 = refl ; pi2 = refl }) -- whileTestPSem c whileConvPSemSound : {l : Level} → (input : Envc) → (whileTestStateP s1 input ) implies (whileTestStateP s2 input) whileConvPSemSound input = proof λ x → (conv input x) where conv : (env : Envc ) → (vari env ≡ 0) /\ (varn env ≡ c10 env) → varn env + vari env ≡ c10 env conv e record { pi1 = refl ; pi2 = refl } = +zero loopPP : (n : ℕ) → (input : Envc ) → (n ≡ varn input) → Envc loopPP zero input refl = input loopPP (suc n) input refl = loopPP n (record input { varn = pred (varn input) ; vari = suc (vari input)}) refl whileLoopPSem : {l : Level} {t : Set l} → (input : Envc ) → whileTestStateP s2 input → (next : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP s2 output) → t) → (exit : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP sf output) → t) → t whileLoopPSem env s next exit with varn env | s ... | zero | _ = exit env (proof (λ z → z)) ... | (suc varn ) | refl = next ( record env { varn = varn ; vari = suc (vari env) } ) (proof λ x → +-suc varn (vari env) ) loopPPSem : (input output : Envc ) → output ≡ loopPP (varn input) input refl → (whileTestStateP s2 input ) → (whileTestStateP s2 input ) implies (whileTestStateP sf output) loopPPSem input output refl s2p = loopPPSemInduct (varn input) input refl refl s2p where lem : (n : ℕ) → (env : Envc) → n + suc (vari env) ≡ suc (n + vari env) lem n env = +-suc (n) (vari env) loopPPSemInduct : (n : ℕ) → (current : Envc) → (eq : n ≡ varn current) → (loopeq : output ≡ loopPP n current eq) → (whileTestStateP s2 current ) → (whileTestStateP s2 current ) implies (whileTestStateP sf output) loopPPSemInduct zero current refl loopeq refl rewrite loopeq = proof (λ x → refl) loopPPSemInduct (suc n) current refl loopeq refl rewrite (sym (lem n current)) = whileLoopPSem current refl (λ output x → loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) (λ output x → loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) whileLoopPSemSound : {l : Level} → (input output : Envc ) → whileTestStateP s2 input → output ≡ loopPP (varn input) input refl → (whileTestStateP s2 input ) implies ( whileTestStateP sf output ) whileLoopPSemSound {l} input output pre eq = loopPPSem input output eq pre