Mercurial > hg > Papers > 2020 > ryokka-master
view paper/src/whileTestProof.agda.replaced @ 19:046b2b20d6c7 default tip
fix
author | ryokka |
---|---|
date | Mon, 09 Mar 2020 11:25:49 +0900 |
parents | |
children |
line wrap: on
line source
module whileTestProof where -- -- Using imply relation to make soundness explicit -- termination is shown by induction on varn -- data _implies_ (A B : Set ) : Set (succ Zero) where proof : ( A @$\rightarrow$@ B ) @$\rightarrow$@ A implies B implies2p : {A B : Set } @$\rightarrow$@ A implies B @$\rightarrow$@ A @$\rightarrow$@ B implies2p (proof x) = x whileTestPSem : (c : @$\mathbb{N}$@) @$\rightarrow$@ whileTestP c ( @$\lambda$@ env @$\rightarrow$@ ⊤ implies (whileTestStateP s1 env) ) whileTestPSem c = proof ( @$\lambda$@ _ @$\rightarrow$@ record { pi1 = refl ; pi2 = refl } ) SemGears : (f : {l : Level } {t : Set l } @$\rightarrow$@ (e0 : Envc ) @$\rightarrow$@ ((e : Envc) @$\rightarrow$@ t) @$\rightarrow$@ t ) @$\rightarrow$@ Set (succ Zero) SemGears f = Envc @$\rightarrow$@ Envc @$\rightarrow$@ Set GearsUnitSound : (e0 e1 : Envc) {pre : Envc @$\rightarrow$@ Set} {post : Envc @$\rightarrow$@ Set} @$\rightarrow$@ (f : {l : Level } {t : Set l } @$\rightarrow$@ (e0 : Envc ) @$\rightarrow$@ (Envc @$\rightarrow$@ t) @$\rightarrow$@ t ) @$\rightarrow$@ (fsem : (e0 : Envc ) @$\rightarrow$@ f e0 ( @$\lambda$@ e1 @$\rightarrow$@ (pre e0) implies (post e1))) @$\rightarrow$@ f e0 (@$\lambda$@ e1 @$\rightarrow$@ pre e0 implies post e1) GearsUnitSound e0 e1 f fsem = fsem e0 whileTestPSemSound : (c : @$\mathbb{N}$@ ) (output : Envc ) @$\rightarrow$@ output @$\equiv$@ whileTestP c (@$\lambda$@ e @$\rightarrow$@ e) @$\rightarrow$@ ⊤ implies ((vari output @$\equiv$@ 0) @$\wedge$@ (varn output @$\equiv$@ c)) whileTestPSemSound c output refl = proof (@$\lambda$@ x @$\rightarrow$@ record { pi1 = refl ; pi2 = refl }) -- whileTestPSem c whileConvPSemSound : {l : Level} @$\rightarrow$@ (input : Envc) @$\rightarrow$@ (whileTestStateP s1 input ) implies (whileTestStateP s2 input) whileConvPSemSound input = proof @$\lambda$@ x @$\rightarrow$@ (conv input x) where conv : (env : Envc ) @$\rightarrow$@ (vari env @$\equiv$@ 0) @$\wedge$@ (varn env @$\equiv$@ c10 env) @$\rightarrow$@ varn env + vari env @$\equiv$@ c10 env conv e record { pi1 = refl ; pi2 = refl } = +zero loopPP : (n : @$\mathbb{N}$@) @$\rightarrow$@ (input : Envc ) @$\rightarrow$@ (n @$\equiv$@ varn input) @$\rightarrow$@ Envc loopPP zero input refl = input loopPP (suc n) input refl = loopPP n (record input { varn = pred (varn input) ; vari = suc (vari input)}) refl whileLoopPSem : {l : Level} {t : Set l} @$\rightarrow$@ (input : Envc ) @$\rightarrow$@ whileTestStateP s2 input @$\rightarrow$@ (next : (output : Envc ) @$\rightarrow$@ (whileTestStateP s2 input ) implies (whileTestStateP s2 output) @$\rightarrow$@ t) @$\rightarrow$@ (exit : (output : Envc ) @$\rightarrow$@ (whileTestStateP s2 input ) implies (whileTestStateP sf output) @$\rightarrow$@ t) @$\rightarrow$@ t whileLoopPSem env s next exit with varn env | s ... | zero | _ = exit env (proof (@$\lambda$@ z @$\rightarrow$@ z)) ... | (suc varn ) | refl = next ( record env { varn = varn ; vari = suc (vari env) } ) (proof @$\lambda$@ x @$\rightarrow$@ +-suc varn (vari env) ) loopPPSem : (input output : Envc ) @$\rightarrow$@ output @$\equiv$@ loopPP (varn input) input refl @$\rightarrow$@ (whileTestStateP s2 input ) @$\rightarrow$@ (whileTestStateP s2 input ) implies (whileTestStateP sf output) loopPPSem input output refl s2p = loopPPSemInduct (varn input) input refl refl s2p where lem : (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc) @$\rightarrow$@ n + suc (vari env) @$\equiv$@ suc (n + vari env) lem n env = +-suc (n) (vari env) loopPPSemInduct : (n : @$\mathbb{N}$@) @$\rightarrow$@ (current : Envc) @$\rightarrow$@ (eq : n @$\equiv$@ varn current) @$\rightarrow$@ (loopeq : output @$\equiv$@ loopPP n current eq) @$\rightarrow$@ (whileTestStateP s2 current ) @$\rightarrow$@ (whileTestStateP s2 current ) implies (whileTestStateP sf output) loopPPSemInduct zero current refl loopeq refl rewrite loopeq = proof (@$\lambda$@ x @$\rightarrow$@ refl) loopPPSemInduct (suc n) current refl loopeq refl rewrite (sym (lem n current)) = whileLoopPSem current refl (@$\lambda$@ output x @$\rightarrow$@ loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) (@$\lambda$@ output x @$\rightarrow$@ loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) whileLoopPSemSound : {l : Level} @$\rightarrow$@ (input output : Envc ) @$\rightarrow$@ whileTestStateP s2 input @$\rightarrow$@ output @$\equiv$@ loopPP (varn input) input refl @$\rightarrow$@ (whileTestStateP s2 input ) implies ( whileTestStateP sf output ) whileLoopPSemSound {l} input output pre eq = loopPPSem input output eq pre