Mercurial > hg > Papers > 2020 > ryokka-master
view paper/src/agda-term3.agda.replaced @ 9:95a5f8e76944
fix cbc_agda, cbc_hoare and Conclusion.tex
author | ryokka |
---|---|
date | Fri, 07 Feb 2020 21:40:26 +0900 |
parents | |
children |
line wrap: on
line source
+-comm : (x y : @$\mathbb{N}$@) @$\rightarrow$@ x + y @$\equiv$@ y + x +-comm zero y rewrite (+zero {y}) = refl +-comm (suc x) y = let open @$\equiv$@-Reasoning in begin suc (x + y) @$\equiv$@@$\langle$@@$\rangle$@ suc (x + y) @$\equiv$@@$\langle$@ cong suc (+-comm x y) @$\rangle$@ suc (y + x) @$\equiv$@@$\langle$@ sym (+-suc {y} {x}) @$\rangle$@ y + suc x @$\blacksquare$@ -- +-suc : {x y : @$\mathbb{N}$@} @$\rightarrow$@ x + suc y @$\equiv$@ suc (x + y) -- +-suc {zero} {y} = refl -- +-suc {suc x} {y} = cong suc (+-suc {x} {y})