view paper/src/NatAddSym.agda.replaced @ 2:c7acb9211784

add code, figure. and paper fix content
author ryokka
date Mon, 27 Jan 2020 20:41:36 +0900
parents
children
line wrap: on
line source

open import Relation.Binary.PropositionalEquality
open import nat
open import nat_add
open @$\equiv$@-Reasoning

module nat_add_sym where

addSym : (n m : Nat) @$\rightarrow$@ n + m @$\equiv$@ m + n
addSym O       O   = refl
addSym O    (S m)  = cong S (addSym O m)
addSym (S n)   O   = cong S (addSym n O) 
addSym (S n) (S m) = {!!} -- 後述