Mercurial > hg > Papers > 2020 > ryokka-master
view paper/src/redBlackTreeTest.agda.replaced @ 2:c7acb9211784
add code, figure. and paper fix content
author | ryokka |
---|---|
date | Mon, 27 Jan 2020 20:41:36 +0900 |
parents | |
children | b5fffa8ae875 |
line wrap: on
line source
module redBlackTreeTest where open import RedBlackTree open import stack open import Level hiding (zero) open import Data.Nat open Tree open Node open RedBlackTree.RedBlackTree open Stack -- tests putTree1 : {n m : Level } {a k : Set n} {t : Set m} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ k @$\rightarrow$@ a @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ t) @$\rightarrow$@ t putTree1 {n} {m} {a} {k} {t} tree k1 value next with (root tree) ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) ... | Just n2 = clearSingleLinkedStack (nodeStack tree) (\ s @$\rightarrow$@ findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 @$\rightarrow$@ replaceNode tree1 s n1 next)) open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Function check1 : {m : Level } (n : Maybe (Node @$\mathbb{N}$@ @$\mathbb{N}$@)) @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ Bool {m} check1 Nothing _ = False check1 (Just n) x with Data.Nat.compare (value n) x ... | equal _ = True ... | _ = False check2 : {m : Level } (n : Maybe (Node @$\mathbb{N}$@ @$\mathbb{N}$@)) @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ Bool {m} check2 Nothing _ = False check2 (Just n) x with compare2 (value n) x ... | EQ = True ... | _ = False test1 : putTree1 {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} (createEmptyRedBlackTree@$\mathbb{N}$@ @$\mathbb{N}$@ {Set Level.zero} ) 1 1 ( \t @$\rightarrow$@ getRedBlackTree t 1 ( \t x @$\rightarrow$@ check2 x 1 @$\equiv$@ True )) test1 = refl test2 : putTree1 {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} (createEmptyRedBlackTree@$\mathbb{N}$@ @$\mathbb{N}$@ {Set Level.zero} ) 1 1 ( \t @$\rightarrow$@ putTree1 t 2 2 ( \t @$\rightarrow$@ getRedBlackTree t 1 ( \t x @$\rightarrow$@ check2 x 1 @$\equiv$@ True ))) test2 = refl open @$\equiv$@-Reasoning test3 : putTree1 {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} (createEmptyRedBlackTree@$\mathbb{N}$@ @$\mathbb{N}$@ {Set Level.zero}) 1 1 $ \t @$\rightarrow$@ putTree1 t 2 2 $ \t @$\rightarrow$@ putTree1 t 3 3 $ \t @$\rightarrow$@ putTree1 t 4 4 $ \t @$\rightarrow$@ getRedBlackTree t 1 $ \t x @$\rightarrow$@ check2 x 1 @$\equiv$@ True test3 = begin check2 (Just (record {key = 1 ; value = 1 ; color = Black ; left = Nothing ; right = Just (leafNode 2 2)})) 1 @$\equiv$@@$\langle$@ refl @$\rangle$@ True @$\blacksquare$@ test31 = putTree1 {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} (createEmptyRedBlackTree@$\mathbb{N}$@ @$\mathbb{N}$@ ) 1 1 $ \t @$\rightarrow$@ putTree1 t 2 2 $ \t @$\rightarrow$@ putTree1 t 3 3 $ \t @$\rightarrow$@ putTree1 t 4 4 $ \t @$\rightarrow$@ getRedBlackTree t 4 $ \t x @$\rightarrow$@ x -- test5 : Maybe (Node @$\mathbb{N}$@ @$\mathbb{N}$@) test5 = putTree1 {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} (createEmptyRedBlackTree@$\mathbb{N}$@ @$\mathbb{N}$@ ) 4 4 $ \t @$\rightarrow$@ putTree1 t 6 6 $ \t0 @$\rightarrow$@ clearSingleLinkedStack (nodeStack t0) $ \s @$\rightarrow$@ findNode1 t0 s (leafNode 3 3) ( root t0 ) $ \t1 s n1 @$\rightarrow$@ replaceNode t1 s n1 $ \t @$\rightarrow$@ getRedBlackTree t 3 -- $ \t x @$\rightarrow$@ SingleLinkedStack.top (stack s) -- $ \t x @$\rightarrow$@ n1 $ \t x @$\rightarrow$@ root t where findNode1 : {n m : Level } {a k : Set n} {t : Set m} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ (Node a k) @$\rightarrow$@ (Maybe (Node a k)) @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Node a k @$\rightarrow$@ t) @$\rightarrow$@ t findNode1 t s n1 Nothing next = next t s n1 findNode1 t s n1 ( Just n2 ) next = findNode t s n1 n2 next -- test51 : putTree1 {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} {_} {Maybe (Node @$\mathbb{N}$@ @$\mathbb{N}$@)} (createEmptyRedBlackTree@$\mathbb{N}$@ @$\mathbb{N}$@ {Set Level.zero} ) 1 1 $ \t @$\rightarrow$@ -- putTree1 t 2 2 $ \t @$\rightarrow$@ putTree1 t 3 3 $ \t @$\rightarrow$@ root t @$\equiv$@ Just (record { key = 1; value = 1; left = Just (record { key = 2 ; value = 2 } ); right = Nothing} ) -- test51 = refl test6 : Maybe (Node @$\mathbb{N}$@ @$\mathbb{N}$@) test6 = root (createEmptyRedBlackTree@$\mathbb{N}$@ {_} @$\mathbb{N}$@ {Maybe (Node @$\mathbb{N}$@ @$\mathbb{N}$@)}) test7 : Maybe (Node @$\mathbb{N}$@ @$\mathbb{N}$@) test7 = clearSingleLinkedStack (nodeStack tree2) (\ s @$\rightarrow$@ replaceNode tree2 s n2 (\ t @$\rightarrow$@ root t)) where tree2 = createEmptyRedBlackTree@$\mathbb{N}$@ {_} @$\mathbb{N}$@ {Maybe (Node @$\mathbb{N}$@ @$\mathbb{N}$@)} k1 = 1 n2 = leafNode 0 0 value1 = 1 test8 : Maybe (Node @$\mathbb{N}$@ @$\mathbb{N}$@) test8 = putTree1 {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} (createEmptyRedBlackTree@$\mathbb{N}$@ @$\mathbb{N}$@) 1 1 $ \t @$\rightarrow$@ putTree1 t 2 2 (\ t @$\rightarrow$@ root t) test9 : putRedBlackTree {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} (createEmptyRedBlackTree@$\mathbb{N}$@ @$\mathbb{N}$@ {Set Level.zero} ) 1 1 ( \t @$\rightarrow$@ getRedBlackTree t 1 ( \t x @$\rightarrow$@ check2 x 1 @$\equiv$@ True )) test9 = refl test10 : putRedBlackTree {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} (createEmptyRedBlackTree@$\mathbb{N}$@ @$\mathbb{N}$@ {Set Level.zero} ) 1 1 ( \t @$\rightarrow$@ putRedBlackTree t 2 2 ( \t @$\rightarrow$@ getRedBlackTree t 1 ( \t x @$\rightarrow$@ check2 x 1 @$\equiv$@ True ))) test10 = refl test11 = putRedBlackTree {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} (createEmptyRedBlackTree@$\mathbb{N}$@ @$\mathbb{N}$@) 1 1 $ \t @$\rightarrow$@ putRedBlackTree t 2 2 $ \t @$\rightarrow$@ putRedBlackTree t 3 3 $ \t @$\rightarrow$@ getRedBlackTree t 2 $ \t x @$\rightarrow$@ root t redBlackInSomeState : { m : Level } (a : Set Level.zero) (n : Maybe (Node a @$\mathbb{N}$@)) {t : Set m} @$\rightarrow$@ RedBlackTree {Level.zero} {m} {t} a @$\mathbb{N}$@ redBlackInSomeState {m} a n {t} = record { root = n ; nodeStack = emptySingleLinkedStack ; compare = compare2 } -- compare2 : (x y : @$\mathbb{N}$@ ) @$\rightarrow$@ compareresult -- compare2 zero zero = eq -- compare2 (suc _) zero = gt -- compare2 zero (suc _) = lt -- compare2 (suc x) (suc y) = compare2 x y putTest1Lemma2 : (k : @$\mathbb{N}$@) @$\rightarrow$@ compare2 k k @$\equiv$@ EQ putTest1Lemma2 zero = refl putTest1Lemma2 (suc k) = putTest1Lemma2 k putTest1Lemma1 : (x y : @$\mathbb{N}$@) @$\rightarrow$@ compare@$\mathbb{N}$@ x y @$\equiv$@ compare2 x y putTest1Lemma1 zero zero = refl putTest1Lemma1 (suc m) zero = refl putTest1Lemma1 zero (suc n) = refl putTest1Lemma1 (suc m) (suc n) with Data.Nat.compare m n putTest1Lemma1 (suc .m) (suc .(Data.Nat.suc m + k)) | less m k = lemma1 m where lemma1 : (m : @$\mathbb{N}$@) @$\rightarrow$@ LT @$\equiv$@ compare2 m (@$\mathbb{N}$@.suc (m + k)) lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma1 (suc .m) (suc .m) | equal m = lemma1 m where lemma1 : (m : @$\mathbb{N}$@) @$\rightarrow$@ EQ @$\equiv$@ compare2 m m lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma1 (suc .(Data.Nat.suc m + k)) (suc .m) | greater m k = lemma1 m where lemma1 : (m : @$\mathbb{N}$@) @$\rightarrow$@ GT @$\equiv$@ compare2 (@$\mathbb{N}$@.suc (m + k)) m lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma3 : (k : @$\mathbb{N}$@) @$\rightarrow$@ compare@$\mathbb{N}$@ k k @$\equiv$@ EQ putTest1Lemma3 k = trans (putTest1Lemma1 k k) ( putTest1Lemma2 k ) compareLemma1 : {x y : @$\mathbb{N}$@} @$\rightarrow$@ compare2 x y @$\equiv$@ EQ @$\rightarrow$@ x @$\equiv$@ y compareLemma1 {zero} {zero} refl = refl compareLemma1 {zero} {suc _} () compareLemma1 {suc _} {zero} () compareLemma1 {suc x} {suc y} eq = cong ( \z @$\rightarrow$@ @$\mathbb{N}$@.suc z ) ( compareLemma1 ( trans lemma2 eq ) ) where lemma2 : compare2 (@$\mathbb{N}$@.suc x) (@$\mathbb{N}$@.suc y) @$\equiv$@ compare2 x y lemma2 = refl putTest1 :{ m : Level } (n : Maybe (Node @$\mathbb{N}$@ @$\mathbb{N}$@)) @$\rightarrow$@ (k : @$\mathbb{N}$@) (x : @$\mathbb{N}$@) @$\rightarrow$@ putTree1 {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} (redBlackInSomeState {_} @$\mathbb{N}$@ n {Set Level.zero}) k x (\ t @$\rightarrow$@ getRedBlackTree t k (\ t x1 @$\rightarrow$@ check2 x1 x @$\equiv$@ True)) putTest1 n k x with n ... | Just n1 = lemma2 ( record { top = Nothing } ) where lemma2 : (s : SingleLinkedStack (Node @$\mathbb{N}$@ @$\mathbb{N}$@) ) @$\rightarrow$@ putTree1 (record { root = Just n1 ; nodeStack = s ; compare = compare2 }) k x (@$\lambda$@ t → GetRedBlackTree.checkNode t k (@$\lambda$@ t@$\text{1}$@ x1 → check2 x1 x @$\equiv$@ True) (root t)) lemma2 s with compare2 k (key n1) ... | EQ = lemma3 {!!} where lemma3 : compare2 k (key n1) @$\equiv$@ EQ @$\rightarrow$@ getRedBlackTree {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} {Set Level.zero} ( record { root = Just ( record { key = key n1 ; value = x ; right = right n1 ; left = left n1 ; color = Black } ) ; nodeStack = s ; compare = @$\lambda$@ x@$\text{1}$@ y → compare2 x@$\text{1}$@ y } ) k ( \ t x1 @$\rightarrow$@ check2 x1 x @$\equiv$@ True) lemma3 eq with compare2 x x | putTest1Lemma2 x ... | EQ | refl with compare2 k (key n1) | eq ... | EQ | refl with compare2 x x | putTest1Lemma2 x ... | EQ | refl = refl ... | GT = {!!} ... | LT = {!!} ... | Nothing = lemma1 where lemma1 : getRedBlackTree {_} {_} {@$\mathbb{N}$@} {@$\mathbb{N}$@} {Set Level.zero} ( record { root = Just ( record { key = k ; value = x ; right = Nothing ; left = Nothing ; color = Red } ) ; nodeStack = record { top = Nothing } ; compare = @$\lambda$@ x@$\text{1}$@ y → compare2 x@$\text{1}$@ y } ) k ( \ t x1 @$\rightarrow$@ check2 x1 x @$\equiv$@ True) lemma1 with compare2 k k | putTest1Lemma2 k ... | EQ | refl with compare2 x x | putTest1Lemma2 x ... | EQ | refl = refl