view paper/src/stack.agda.replaced @ 2:c7acb9211784

add code, figure. and paper fix content
author ryokka
date Mon, 27 Jan 2020 20:41:36 +0900
parents
children
line wrap: on
line source

open import Level renaming (suc to succ ; zero to Zero )
module stack  where

open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Core
open import Data.Nat

ex : 1 + 2 @$\equiv$@ 3
ex = refl

data Bool {n : Level } : Set n where
  True  : Bool
  False : Bool

record _@$\wedge$@_ {n : Level } (a : Set n) (b : Set n): Set n where
  field
    pi1 : a
    pi2 : b

data Maybe {n : Level } (a : Set n) : Set n where
  Nothing : Maybe a
  Just    : a @$\rightarrow$@ Maybe a

record StackMethods {n m : Level } (a : Set n ) {t : Set m }(stackImpl : Set n ) : Set (m Level.@$\sqcup$@ n) where
  field
    push : stackImpl @$\rightarrow$@ a @$\rightarrow$@ (stackImpl @$\rightarrow$@ t) @$\rightarrow$@ t
    pop  : stackImpl @$\rightarrow$@ (stackImpl @$\rightarrow$@ Maybe a @$\rightarrow$@ t) @$\rightarrow$@ t
    pop2 : stackImpl @$\rightarrow$@ (stackImpl @$\rightarrow$@ Maybe a @$\rightarrow$@ Maybe a @$\rightarrow$@ t) @$\rightarrow$@ t
    get  : stackImpl @$\rightarrow$@ (stackImpl @$\rightarrow$@ Maybe a @$\rightarrow$@ t) @$\rightarrow$@ t
    get2 : stackImpl @$\rightarrow$@ (stackImpl @$\rightarrow$@ Maybe a @$\rightarrow$@ Maybe a @$\rightarrow$@ t) @$\rightarrow$@ t
    clear : stackImpl @$\rightarrow$@ (stackImpl @$\rightarrow$@ t) @$\rightarrow$@ t
open StackMethods

record Stack {n m : Level } (a : Set n ) {t : Set m } (si : Set n ) : Set (m Level.@$\sqcup$@ n) where
  field
    stack : si
    stackMethods : StackMethods {n} {m} a {t} si
  pushStack :  a @$\rightarrow$@ (Stack a si @$\rightarrow$@ t) @$\rightarrow$@ t
  pushStack d next = push (stackMethods ) (stack ) d (\s1 @$\rightarrow$@ next (record {stack = s1 ; stackMethods = stackMethods } ))
  popStack : (Stack a si @$\rightarrow$@ Maybe a  @$\rightarrow$@ t) @$\rightarrow$@ t
  popStack next = pop (stackMethods ) (stack ) (\s1 d1 @$\rightarrow$@ next (record {stack = s1 ; stackMethods = stackMethods }) d1 )
  pop2Stack :  (Stack a si @$\rightarrow$@ Maybe a @$\rightarrow$@ Maybe a @$\rightarrow$@ t) @$\rightarrow$@ t
  pop2Stack next = pop2 (stackMethods ) (stack ) (\s1 d1 d2 @$\rightarrow$@ next (record {stack = s1 ; stackMethods = stackMethods }) d1 d2)
  getStack :  (Stack a si @$\rightarrow$@ Maybe a  @$\rightarrow$@ t) @$\rightarrow$@ t
  getStack next = get (stackMethods ) (stack ) (\s1 d1 @$\rightarrow$@ next (record {stack = s1 ; stackMethods = stackMethods }) d1 )
  get2Stack :  (Stack a si @$\rightarrow$@ Maybe a @$\rightarrow$@ Maybe a @$\rightarrow$@ t) @$\rightarrow$@ t
  get2Stack next = get2 (stackMethods ) (stack ) (\s1 d1 d2 @$\rightarrow$@ next (record {stack = s1 ; stackMethods = stackMethods }) d1 d2)
  clearStack : (Stack a si @$\rightarrow$@ t) @$\rightarrow$@ t
  clearStack next = clear (stackMethods ) (stack ) (\s1 @$\rightarrow$@ next (record {stack = s1 ; stackMethods = stackMethods } ))

open Stack

{--
data Element {n : Level } (a : Set n) : Set n where
  cons : a @$\rightarrow$@ Maybe (Element a) @$\rightarrow$@ Element a


datum : {n : Level } {a : Set n} @$\rightarrow$@ Element a @$\rightarrow$@ a
datum (cons a _) = a

next : {n : Level } {a : Set n} @$\rightarrow$@ Element a @$\rightarrow$@ Maybe (Element a)
next (cons _ n) = n
--}


-- cannot define recrusive record definition. so use linked list with maybe.
record Element {l : Level} (a : Set l) : Set l where
  inductive
  constructor cons
  field
    datum : a  -- `data` is reserved by Agda.
    next : Maybe (Element a)

open Element


record SingleLinkedStack {n : Level } (a : Set n) : Set n where
  field
    top : Maybe (Element a)
open SingleLinkedStack

pushSingleLinkedStack : {n m : Level } {t : Set m } {Data : Set n} @$\rightarrow$@ SingleLinkedStack Data @$\rightarrow$@ Data @$\rightarrow$@ (Code : SingleLinkedStack Data @$\rightarrow$@ t) @$\rightarrow$@ t
pushSingleLinkedStack stack datum next = next stack1
  where
    element = cons datum (top stack)
    stack1  = record {top = Just element}


popSingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ (Code : SingleLinkedStack a @$\rightarrow$@ (Maybe a) @$\rightarrow$@ t) @$\rightarrow$@ t
popSingleLinkedStack stack cs with (top stack)
...                                | Nothing = cs stack  Nothing
...                                | Just d  = cs stack1 (Just data1)
  where
    data1  = datum d
    stack1 = record { top = (next d) }

pop2SingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ (Code : SingleLinkedStack a @$\rightarrow$@ (Maybe a) @$\rightarrow$@ (Maybe a) @$\rightarrow$@ t) @$\rightarrow$@ t
pop2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack)
...                                | Nothing = cs stack Nothing Nothing
...                                | Just d = pop2SingleLinkedStack' {n} {m} stack cs
  where
    pop2SingleLinkedStack' : {n m : Level } {t : Set m }  @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ (Code : SingleLinkedStack a @$\rightarrow$@ (Maybe a) @$\rightarrow$@ (Maybe a) @$\rightarrow$@ t) @$\rightarrow$@ t
    pop2SingleLinkedStack' stack cs with (next d)
    ...              | Nothing = cs stack Nothing Nothing
    ...              | Just d1 = cs (record {top = (next d1)}) (Just (datum d)) (Just (datum d1))


getSingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ (Code : SingleLinkedStack a @$\rightarrow$@ (Maybe a) @$\rightarrow$@ t) @$\rightarrow$@ t
getSingleLinkedStack stack cs with (top stack)
...                                | Nothing = cs stack  Nothing
...                                | Just d  = cs stack (Just data1)
  where
    data1  = datum d

get2SingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ (Code : SingleLinkedStack a @$\rightarrow$@ (Maybe a) @$\rightarrow$@ (Maybe a) @$\rightarrow$@ t) @$\rightarrow$@ t
get2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack)
...                                | Nothing = cs stack Nothing Nothing
...                                | Just d = get2SingleLinkedStack' {n} {m} stack cs
  where
    get2SingleLinkedStack' : {n m : Level} {t : Set m } @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ (Code : SingleLinkedStack a @$\rightarrow$@ (Maybe a) @$\rightarrow$@ (Maybe a) @$\rightarrow$@ t) @$\rightarrow$@ t
    get2SingleLinkedStack' stack cs with (next d)
    ...              | Nothing = cs stack Nothing Nothing
    ...              | Just d1 = cs stack (Just (datum d)) (Just (datum d1))

clearSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ (SingleLinkedStack a @$\rightarrow$@ t) @$\rightarrow$@ t
clearSingleLinkedStack stack next = next (record {top = Nothing})


emptySingleLinkedStack : {n : Level } {a : Set n} @$\rightarrow$@ SingleLinkedStack a
emptySingleLinkedStack = record {top = Nothing}

-----
-- Basic stack implementations are specifications of a Stack
--
singleLinkedStackSpec : {n m : Level } {t : Set m } {a : Set n} @$\rightarrow$@ StackMethods {n} {m} a {t} (SingleLinkedStack a)
singleLinkedStackSpec = record {
                                   push = pushSingleLinkedStack
                                 ; pop  = popSingleLinkedStack
                                 ; pop2 = pop2SingleLinkedStack
                                 ; get  = getSingleLinkedStack
                                 ; get2 = get2SingleLinkedStack
                                 ; clear = clearSingleLinkedStack
                           }

createSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} @$\rightarrow$@ Stack {n} {m} a {t} (SingleLinkedStack a)
createSingleLinkedStack = record {
                             stack = emptySingleLinkedStack ;
                             stackMethods = singleLinkedStackSpec
                           }