view paper/src/agda-hoare-soundness.agda.replaced @ 13:e8655e0264b8

fix paper, slide
author ryokka
date Tue, 11 Feb 2020 02:31:26 +0900
parents bf3288c36d7e
children
line wrap: on
line source

Soundness : {bPre : Cond} @$\rightarrow$@ {cm : Comm} @$\rightarrow$@ {bPost : Cond} @$\rightarrow$@
            HTProof bPre cm bPost @$\rightarrow$@ Satisfies bPre cm bPost
Soundness (PrimRule {bPre} {cm} {bPost} pr) s1 s2 q1 q2
  = axiomValid bPre cm bPost pr s1 s2 q1 q2
Soundness {.bPost} {.Skip} {bPost} (SkipRule .bPost) s1 s2 q1 q2
  = substId1 State {Level.zero} {State} {s1} {s2} (proj@$\_{2}$@ q2) (SemCond bPost) q1
Soundness {bPre} {.Abort} {bPost} (AbortRule .bPre .bPost) s1 s2 q1 ()
Soundness (WeakeningRule {bPre} {bPre'} {cm} {bPost'} {bPost} tautPre pr tautPost)
          s1 s2 q1 q2
  = let hyp : Satisfies bPre' cm bPost'
        hyp = Soundness pr
    in tautValid bPost' bPost tautPost s2 (hyp s1 s2 (tautValid bPre bPre' tautPre s1 q1) q2)
Soundness (SeqRule {bPre} {cm1} {bMid} {cm2} {bPost} pr1 pr2)
           s1 s2 q1 q2
  = let hyp1 : Satisfies bPre cm1 bMid
        hyp1 = Soundness pr1
        hyp2 : Satisfies bMid cm2 bPost
        hyp2 = Soundness pr2
    in hyp2 (proj@$\_{1}$@ q2) s2 (hyp1 s1 (proj@$\_{1}$@ q2) q1 (proj@$\_{1}$@ (proj@$\_{2}$@ q2))) (proj@$\_{2}$@ (proj@$\_{2}$@ q2))
Soundness (IfRule {cmThen} {cmElse} {bPre} {bPost} {b} pThen pElse)
          s1 s2 q1 q2
  = let hypThen : Satisfies (bPre @$\wedge$@ b) cmThen bPost
        hypThen = Soundness pThen
        hypElse : Satisfies (bPre @$\wedge$@ neg b) cmElse bPost
        hypElse = Soundness pElse
        rThen : RelOpState.comp (RelOpState.delta (SemCond b))
                  (SemComm cmThen) s1 s2 @$\rightarrow$@ SemCond bPost s2
        rThen = @$\lambda$@ h @$\rightarrow$@ hypThen s1 s2 ((proj@$\_{2}$@ (respAnd bPre b s1)) (q1 , proj@$\_{1}$@ t1))
          (proj@$\_{2}$@ ((proj@$\_{2}$@ (RelOpState.deltaRestPre (SemCond b) (SemComm cmThen) s1 s2)) h))
        rElse : RelOpState.comp (RelOpState.delta (NotP (SemCond b)))
                  (SemComm cmElse) s1 s2 @$\rightarrow$@ SemCond bPost s2
        rElse = @$\lambda$@ h @$\rightarrow$@
                  let t10 : (NotP (SemCond b) s1) @$\times$@ (SemComm cmElse s1 s2)
                      t10 = proj@$\_{2}$@ (RelOpState.deltaRestPre
                                  (NotP (SemCond b)) (SemComm cmElse) s1 s2) h
                  in hypElse s1 s2 (proj@$\_{2}$@ (respAnd bPre (neg b) s1)
                             (q1 , (proj@$\_{2}$@ (respNeg b s1) (proj@$\_{1}$@ t10)))) (proj@$\_{2}$@ t10)
    in when rThen rElse q2
Soundness (WhileRule {cm'} {bInv} {b} pr) s1 s2 q1 q2
  = proj@$\_{2}$@ (respAnd bInv (neg b) s2)
          (lem1 (proj@$\_{1}$@ q2) s2 (proj@$\_{1}$@ t15) , proj@$\_{2}$@ (respNeg b s2) (proj@$\_{2}$@ t15))
    where
      hyp : Satisfies (bInv @$\wedge$@ b) cm' bInv
      hyp = Soundness pr
      Rel1 : @$\mathbb{N}$@ @$\rightarrow$@ Rel State (Level.zero)
      Rel1 = @$\lambda$@ m @$\rightarrow$@
               RelOpState.repeat
                 m
                 (RelOpState.comp (RelOpState.delta (SemCond b))
                                  (SemComm cm'))
      t15 : (Rel1 (proj@$\_{1}$@ q2) s1 s2) @$\times$@ (NotP (SemCond b) s2)
      t15 = proj@$\_{2}$@ (RelOpState.deltaRestPost
        (NotP (SemCond b)) (Rel1 (proj@$\_{1}$@ q2)) s1 s2) (proj@$\_{2}$@ q2)
      lem1 : (m : @$\mathbb{N}$@) @$\rightarrow$@ (ss2 : State) @$\rightarrow$@ Rel1 m s1 ss2 @$\rightarrow$@ SemCond bInv ss2
      lem1 zero ss2 h = substId1 State (proj@$\_{2}$@ h) (SemCond bInv) q1
      lem1 (suc n) ss2 h
    = let hyp2 : (z : State) @$\rightarrow$@ Rel1 (proj@$\_{1}$@ q2) s1 z @$\rightarrow$@
                     SemCond bInv z
              hyp2 = lem1 n
              t22 : (SemCond b (proj@$\_{1}$@ h)) @$\times$@ (SemComm cm' (proj@$\_{1}$@ h) ss2)
              t22 = proj@$\_{2}$@ (RelOpState.deltaRestPre (SemCond b) (SemComm cm') (proj@$\_{1}$@ h) ss2)
                    (proj@$\_{2}$@ (proj@$\_{2}$@ h))
              t23 : SemCond (bInv @$\wedge$@ b) (proj@$\_{1}$@ h)
              t23 = proj@$\_{2}$@ (respAnd bInv b (proj@$\_{1}$@ h))
                (hyp2 (proj@$\_{1}$@ h) (proj@$\_{1}$@ (proj@$\_{2}$@ h)) , proj@$\_{1}$@ t22)
      in hyp (proj@$\_{1}$@ h) ss2 t23 (proj@$\_{2}$@ t22)