Mercurial > hg > Papers > 2020 > ryokka-master
view paper/src/agda-hoare-soundness.agda.replaced @ 13:e8655e0264b8
fix paper, slide
author | ryokka |
---|---|
date | Tue, 11 Feb 2020 02:31:26 +0900 |
parents | bf3288c36d7e |
children |
line wrap: on
line source
Soundness : {bPre : Cond} @$\rightarrow$@ {cm : Comm} @$\rightarrow$@ {bPost : Cond} @$\rightarrow$@ HTProof bPre cm bPost @$\rightarrow$@ Satisfies bPre cm bPost Soundness (PrimRule {bPre} {cm} {bPost} pr) s1 s2 q1 q2 = axiomValid bPre cm bPost pr s1 s2 q1 q2 Soundness {.bPost} {.Skip} {bPost} (SkipRule .bPost) s1 s2 q1 q2 = substId1 State {Level.zero} {State} {s1} {s2} (proj@$\_{2}$@ q2) (SemCond bPost) q1 Soundness {bPre} {.Abort} {bPost} (AbortRule .bPre .bPost) s1 s2 q1 () Soundness (WeakeningRule {bPre} {bPre'} {cm} {bPost'} {bPost} tautPre pr tautPost) s1 s2 q1 q2 = let hyp : Satisfies bPre' cm bPost' hyp = Soundness pr in tautValid bPost' bPost tautPost s2 (hyp s1 s2 (tautValid bPre bPre' tautPre s1 q1) q2) Soundness (SeqRule {bPre} {cm1} {bMid} {cm2} {bPost} pr1 pr2) s1 s2 q1 q2 = let hyp1 : Satisfies bPre cm1 bMid hyp1 = Soundness pr1 hyp2 : Satisfies bMid cm2 bPost hyp2 = Soundness pr2 in hyp2 (proj@$\_{1}$@ q2) s2 (hyp1 s1 (proj@$\_{1}$@ q2) q1 (proj@$\_{1}$@ (proj@$\_{2}$@ q2))) (proj@$\_{2}$@ (proj@$\_{2}$@ q2)) Soundness (IfRule {cmThen} {cmElse} {bPre} {bPost} {b} pThen pElse) s1 s2 q1 q2 = let hypThen : Satisfies (bPre @$\wedge$@ b) cmThen bPost hypThen = Soundness pThen hypElse : Satisfies (bPre @$\wedge$@ neg b) cmElse bPost hypElse = Soundness pElse rThen : RelOpState.comp (RelOpState.delta (SemCond b)) (SemComm cmThen) s1 s2 @$\rightarrow$@ SemCond bPost s2 rThen = @$\lambda$@ h @$\rightarrow$@ hypThen s1 s2 ((proj@$\_{2}$@ (respAnd bPre b s1)) (q1 , proj@$\_{1}$@ t1)) (proj@$\_{2}$@ ((proj@$\_{2}$@ (RelOpState.deltaRestPre (SemCond b) (SemComm cmThen) s1 s2)) h)) rElse : RelOpState.comp (RelOpState.delta (NotP (SemCond b))) (SemComm cmElse) s1 s2 @$\rightarrow$@ SemCond bPost s2 rElse = @$\lambda$@ h @$\rightarrow$@ let t10 : (NotP (SemCond b) s1) @$\times$@ (SemComm cmElse s1 s2) t10 = proj@$\_{2}$@ (RelOpState.deltaRestPre (NotP (SemCond b)) (SemComm cmElse) s1 s2) h in hypElse s1 s2 (proj@$\_{2}$@ (respAnd bPre (neg b) s1) (q1 , (proj@$\_{2}$@ (respNeg b s1) (proj@$\_{1}$@ t10)))) (proj@$\_{2}$@ t10) in when rThen rElse q2 Soundness (WhileRule {cm'} {bInv} {b} pr) s1 s2 q1 q2 = proj@$\_{2}$@ (respAnd bInv (neg b) s2) (lem1 (proj@$\_{1}$@ q2) s2 (proj@$\_{1}$@ t15) , proj@$\_{2}$@ (respNeg b s2) (proj@$\_{2}$@ t15)) where hyp : Satisfies (bInv @$\wedge$@ b) cm' bInv hyp = Soundness pr Rel1 : @$\mathbb{N}$@ @$\rightarrow$@ Rel State (Level.zero) Rel1 = @$\lambda$@ m @$\rightarrow$@ RelOpState.repeat m (RelOpState.comp (RelOpState.delta (SemCond b)) (SemComm cm')) t15 : (Rel1 (proj@$\_{1}$@ q2) s1 s2) @$\times$@ (NotP (SemCond b) s2) t15 = proj@$\_{2}$@ (RelOpState.deltaRestPost (NotP (SemCond b)) (Rel1 (proj@$\_{1}$@ q2)) s1 s2) (proj@$\_{2}$@ q2) lem1 : (m : @$\mathbb{N}$@) @$\rightarrow$@ (ss2 : State) @$\rightarrow$@ Rel1 m s1 ss2 @$\rightarrow$@ SemCond bInv ss2 lem1 zero ss2 h = substId1 State (proj@$\_{2}$@ h) (SemCond bInv) q1 lem1 (suc n) ss2 h = let hyp2 : (z : State) @$\rightarrow$@ Rel1 (proj@$\_{1}$@ q2) s1 z @$\rightarrow$@ SemCond bInv z hyp2 = lem1 n t22 : (SemCond b (proj@$\_{1}$@ h)) @$\times$@ (SemComm cm' (proj@$\_{1}$@ h) ss2) t22 = proj@$\_{2}$@ (RelOpState.deltaRestPre (SemCond b) (SemComm cm') (proj@$\_{1}$@ h) ss2) (proj@$\_{2}$@ (proj@$\_{2}$@ h)) t23 : SemCond (bInv @$\wedge$@ b) (proj@$\_{1}$@ h) t23 = proj@$\_{2}$@ (respAnd bInv b (proj@$\_{1}$@ h)) (hyp2 (proj@$\_{1}$@ h) (proj@$\_{1}$@ (proj@$\_{2}$@ h)) , proj@$\_{1}$@ t22) in hyp (proj@$\_{1}$@ h) ss2 t23 (proj@$\_{2}$@ t22)