_@$\Rightarrow$@_ : Bool → Bool → Bool false @$\Rightarrow$@ _ = true true @$\Rightarrow$@ true = true true @$\Rightarrow$@ false = false Axiom : Cond @$\rightarrow$@ PrimComm @$\rightarrow$@ Cond @$\rightarrow$@ Set Axiom pre comm post = ∀ (env : Env) → (pre env) @$\Rightarrow$@ ( post (comm env)) @$\equiv$@ true Tautology : Cond @$\rightarrow$@ Cond @$\rightarrow$@ Set Tautology pre post = ∀ (env : Env) → (pre env) @$\Rightarrow$@ (post env) @$\equiv$@ true