comparison src/stackTest.agda.replaced @ 1:73127e0ab57c

(none)
author soto@cr.ie.u-ryukyu.ac.jp
date Tue, 08 Sep 2020 18:38:08 +0900
parents
children
comparison
equal deleted inserted replaced
0:b919985837a3 1:73127e0ab57c
1 open import Level renaming (suc to succ ; zero to Zero )
2 module stackTest where
3
4 open import stack
5
6 open import Relation.Binary.PropositionalEquality
7 open import Relation.Binary.Core
8 open import Data.Nat
9 open import Function
10
11
12 open SingleLinkedStack
13 open Stack
14
15 ----
16 --
17 -- proof of properties ( concrete cases )
18 --
19
20 test01 : {n : Level } {a : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ Maybe a @$\rightarrow$@ Bool {n}
21 test01 stack _ with (top stack)
22 ... | (Just _) = True
23 ... | Nothing = False
24
25
26 test02 : {n : Level } {a : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ Bool
27 test02 stack = popSingleLinkedStack stack test01
28
29 test03 : {n : Level } {a : Set n} @$\rightarrow$@ a @$\rightarrow$@ Bool
30 test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02
31
32 -- after a push and a pop, the stack is empty
33 lemma : {n : Level} {A : Set n} {a : A} @$\rightarrow$@ test03 a @$\equiv$@ False
34 lemma = refl
35
36 testStack01 : {n m : Level } {a : Set n} @$\rightarrow$@ a @$\rightarrow$@ Bool {m}
37 testStack01 v = pushStack createSingleLinkedStack v (
38 \s @$\rightarrow$@ popStack s (\s1 d1 @$\rightarrow$@ True))
39
40 -- after push 1 and 2, pop2 get 1 and 2
41
42 testStack02 : {m : Level } @$\rightarrow$@ ( Stack @$\mathbb{N}$@ (SingleLinkedStack @$\mathbb{N}$@) @$\rightarrow$@ Bool {m} ) @$\rightarrow$@ Bool {m}
43 testStack02 cs = pushStack createSingleLinkedStack 1 (
44 \s @$\rightarrow$@ pushStack s 2 cs)
45
46
47 testStack031 : (d1 d2 : @$\mathbb{N}$@ ) @$\rightarrow$@ Bool {Zero}
48 testStack031 2 1 = True
49 testStack031 _ _ = False
50
51 testStack032 : (d1 d2 : Maybe @$\mathbb{N}$@) @$\rightarrow$@ Bool {Zero}
52 testStack032 (Just d1) (Just d2) = testStack031 d1 d2
53 testStack032 _ _ = False
54
55 testStack03 : {m : Level } @$\rightarrow$@ Stack @$\mathbb{N}$@ (SingleLinkedStack @$\mathbb{N}$@) @$\rightarrow$@ ((Maybe @$\mathbb{N}$@) @$\rightarrow$@ (Maybe @$\mathbb{N}$@) @$\rightarrow$@ Bool {m} ) @$\rightarrow$@ Bool {m}
56 testStack03 s cs = pop2Stack s (
57 \s d1 d2 @$\rightarrow$@ cs d1 d2 )
58
59 testStack04 : Bool
60 testStack04 = testStack02 (\s @$\rightarrow$@ testStack03 s testStack032)
61
62 testStack05 : testStack04 @$\equiv$@ True
63 testStack05 = refl
64
65 testStack06 : {m : Level } @$\rightarrow$@ Maybe (Element @$\mathbb{N}$@)
66 testStack06 = pushStack createSingleLinkedStack 1 (
67 \s @$\rightarrow$@ pushStack s 2 (\s @$\rightarrow$@ top (stack s)))
68
69 testStack07 : {m : Level } @$\rightarrow$@ Maybe (Element @$\mathbb{N}$@)
70 testStack07 = pushSingleLinkedStack emptySingleLinkedStack 1 (
71 \s @$\rightarrow$@ pushSingleLinkedStack s 2 (\s @$\rightarrow$@ top s))
72
73 testStack08 = pushSingleLinkedStack emptySingleLinkedStack 1
74 $ \s @$\rightarrow$@ pushSingleLinkedStack s 2
75 $ \s @$\rightarrow$@ pushSingleLinkedStack s 3
76 $ \s @$\rightarrow$@ pushSingleLinkedStack s 4
77 $ \s @$\rightarrow$@ pushSingleLinkedStack s 5
78 $ \s @$\rightarrow$@ top s
79
80 ------
81 --
82 -- proof of properties with indefinite state of stack
83 --
84 -- this should be proved by properties of the stack inteface, not only by the implementation,
85 -- and the implementation have to provides the properties.
86 --
87 -- we cannot write "s @$\equiv$@ s3", since level of the Set does not fit , but use stack s @$\equiv$@ stack s3 is ok.
88 -- anyway some implementations may result s != s3
89 --
90
91 stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) @$\rightarrow$@ Stack {l} {m} D {t} ( SingleLinkedStack D )
92 stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec }
93
94 push@$\rightarrow$@push@$\rightarrow$@pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) @$\rightarrow$@
95 pushStack ( stackInSomeState s ) x ( \s1 @$\rightarrow$@ pushStack s1 y ( \s2 @$\rightarrow$@ pop2Stack s2 ( \s3 y1 x1 @$\rightarrow$@ (Just x @$\equiv$@ x1 ) @$\wedge$@ (Just y @$\equiv$@ y1 ) ) ))
96 push@$\rightarrow$@push@$\rightarrow$@pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl }
97
98
99 -- id : {n : Level} {A : Set n} @$\rightarrow$@ A @$\rightarrow$@ A
100 -- id a = a
101
102 -- push a, n times
103
104 n-push : {n : Level} {A : Set n} {a : A} @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A
105 n-push zero s = s
106 n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s @$\rightarrow$@ s )
107
108 n-pop : {n : Level}{A : Set n} {a : A} @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A
109 n-pop zero s = s
110 n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ @$\rightarrow$@ s )
111
112 open @$\equiv$@-Reasoning
113
114 push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) @$\rightarrow$@ (popSingleLinkedStack (pushSingleLinkedStack s a (\s @$\rightarrow$@ s)) (\s _ @$\rightarrow$@ s) ) @$\equiv$@ s
115 push-pop-equiv s = refl
116
117 push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : @$\mathbb{N}$@) (s : SingleLinkedStack A) @$\rightarrow$@ n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) @$\equiv$@ n-pop {_} {A} {a} n s
118 push-and-n-pop zero s = refl
119 push-and-n-pop {_} {A} {a} (suc n) s = begin
120 n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id)
121 @$\equiv$@@$\langle$@ refl @$\rangle$@
122 popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ @$\rightarrow$@ s)
123 @$\equiv$@@$\langle$@ cong (\s @$\rightarrow$@ popSingleLinkedStack s (\s _ @$\rightarrow$@ s )) (push-and-n-pop n s) @$\rangle$@
124 popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ @$\rightarrow$@ s)
125 @$\equiv$@@$\langle$@ refl @$\rangle$@
126 n-pop {_} {A} {a} (suc n) s
127 @$\blacksquare$@
128
129
130 n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : @$\mathbb{N}$@) (s : SingleLinkedStack A) @$\rightarrow$@ (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) @$\equiv$@ s
131 n-push-pop-equiv zero s = refl
132 n-push-pop-equiv {_} {A} {a} (suc n) s = begin
133 n-pop {_} {A} {a} (suc n) (n-push (suc n) s)
134 @$\equiv$@@$\langle$@ refl @$\rangle$@
135 n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s @$\rightarrow$@ s))
136 @$\equiv$@@$\langle$@ push-and-n-pop n (n-push n s) @$\rangle$@
137 n-pop {_} {A} {a} n (n-push n s)
138 @$\equiv$@@$\langle$@ n-push-pop-equiv n s @$\rangle$@
139 s
140 @$\blacksquare$@
141
142
143 n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} @$\rightarrow$@ (n : @$\mathbb{N}$@) @$\rightarrow$@ n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) @$\equiv$@ emptySingleLinkedStack
144 n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack