Mercurial > hg > Papers > 2020 > soto-midterm
view src/whileTestGears.agda.replaced @ 1:73127e0ab57c
(none)
author | soto@cr.ie.u-ryukyu.ac.jp |
---|---|
date | Tue, 08 Sep 2020 18:38:08 +0900 |
parents | |
children |
line wrap: on
line source
module whileTestGears where open import Function open import Data.Nat open import Data.Bool hiding ( _@$\stackrel{?}{=}$@_ ; _@$\leq$@?_ ; _@$\leq$@_ ; _<_) open import Data.Product open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (@$\neg$@_; Dec; yes; no) open import Relation.Binary.PropositionalEquality open import Agda.Builtin.Unit open import utilities open _@$\wedge$@_ -- original codeGear (with non terminatinng ) record Env : Set (succ Zero) where field varn : @$\mathbb{N}$@ vari : @$\mathbb{N}$@ open Env whileTest : {l : Level} {t : Set l} @$\rightarrow$@ (c10 : @$\mathbb{N}$@) @$\rightarrow$@ (Code : Env @$\rightarrow$@ t) @$\rightarrow$@ t whileTest c10 next = next (record {varn = c10 ; vari = 0 } ) {-@$\#$@ TERMINATING @$\#$@-} whileLoop : {l : Level} {t : Set l} @$\rightarrow$@ Env @$\rightarrow$@ (Code : Env @$\rightarrow$@ t) @$\rightarrow$@ t whileLoop env next with lt 0 (varn env) whileLoop env next | false = next env whileLoop env next | true = whileLoop (record env {varn = (varn env) - 1 ; vari = (vari env) + 1}) next test1 : Env test1 = whileTest 10 (@$\lambda$@ env @$\rightarrow$@ whileLoop env (@$\lambda$@ env1 @$\rightarrow$@ env1 )) proof1 : whileTest 10 (@$\lambda$@ env @$\rightarrow$@ whileLoop env (@$\lambda$@ e @$\rightarrow$@ (vari e) @$\equiv$@ 10 )) proof1 = refl -- codeGear with pre-condtion and post-condition -- -- ↓PostCondition whileTest' : {l : Level} {t : Set l} @$\rightarrow$@ {c10 : @$\mathbb{N}$@ } @$\rightarrow$@ (Code : (env : Env ) @$\rightarrow$@ ((vari env) @$\equiv$@ 0) @$\wedge$@ ((varn env) @$\equiv$@ c10) @$\rightarrow$@ t) @$\rightarrow$@ t whileTest' {_} {_} {c10} next = next env proof2 where env : Env env = record {vari = 0 ; varn = c10 } proof2 : ((vari env) @$\equiv$@ 0) @$\wedge$@ ((varn env) @$\equiv$@ c10) -- PostCondition proof2 = record {pi1 = refl ; pi2 = refl} open import Data.Empty open import Data.Nat.Properties {-@$\#$@ TERMINATING @$\#$@-} -- ↓PreCondition(Invaliant) whileLoop' : {l : Level} {t : Set l} @$\rightarrow$@ (env : Env ) @$\rightarrow$@ {c10 : @$\mathbb{N}$@ } @$\rightarrow$@ ((varn env) + (vari env) @$\equiv$@ c10) @$\rightarrow$@ (Code : Env @$\rightarrow$@ t) @$\rightarrow$@ t whileLoop' env proof next with ( suc zero @$\leq$@? (varn env) ) whileLoop' env proof next | no p = next env whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next where env1 = record env {varn = (varn env) - 1 ; vari = (vari env) + 1} 1<0 : 1 @$\leq$@ zero @$\rightarrow$@ @$\bot$@ 1<0 () proof3 : (suc zero @$\leq$@ (varn env)) @$\rightarrow$@ varn env1 + vari env1 @$\equiv$@ c10 proof3 (s@$\leq$@s lt) with varn env proof3 (s@$\leq$@s z@$\leq$@n) | zero = @$\bot$@-elim (1<0 p) proof3 (s@$\leq$@s (z@$\leq$@n {n'}) ) | suc n = let open @$\equiv$@-Reasoning in begin n' + (vari env + 1) @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ n' + z ) ( +-sym {vari env} {1} ) @$\rangle$@ n' + (1 + vari env ) @$\equiv$@@$\langle$@ sym ( +-assoc (n') 1 (vari env) ) @$\rangle$@ (n' + 1) + vari env @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ z + vari env ) +1@$\equiv$@suc @$\rangle$@ (suc n' ) + vari env @$\equiv$@@$\langle$@@$\rangle$@ varn env + vari env @$\equiv$@@$\langle$@ proof @$\rangle$@ c10 @$\blacksquare$@ -- Condition to Invariant conversion1 : {l : Level} {t : Set l } @$\rightarrow$@ (env : Env ) @$\rightarrow$@ {c10 : @$\mathbb{N}$@ } @$\rightarrow$@ ((vari env) @$\equiv$@ 0) @$\wedge$@ ((varn env) @$\equiv$@ c10) @$\rightarrow$@ (Code : (env1 : Env ) @$\rightarrow$@ (varn env1 + vari env1 @$\equiv$@ c10) @$\rightarrow$@ t) @$\rightarrow$@ t conversion1 env {c10} p1 next = next env proof4 where proof4 : varn env + vari env @$\equiv$@ c10 proof4 = let open @$\equiv$@-Reasoning in begin varn env + vari env @$\equiv$@@$\langle$@ cong ( @$\lambda$@ n @$\rightarrow$@ n + vari env ) (pi2 p1 ) @$\rangle$@ c10 + vari env @$\equiv$@@$\langle$@ cong ( @$\lambda$@ n @$\rightarrow$@ c10 + n ) (pi1 p1 ) @$\rangle$@ c10 + 0 @$\equiv$@@$\langle$@ +-sym {c10} {0} @$\rangle$@ c10 @$\blacksquare$@ -- all proofs are connected proofGears : {c10 : @$\mathbb{N}$@ } @$\rightarrow$@ Set proofGears {c10} = whileTest' {_} {_} {c10} (@$\lambda$@ n p1 @$\rightarrow$@ conversion1 n p1 (@$\lambda$@ n1 p2 @$\rightarrow$@ whileLoop' n1 p2 (@$\lambda$@ n2 @$\rightarrow$@ ( vari n2 @$\equiv$@ c10 )))) -- -- codeGear with loop step and closed environment -- open import Relation.Binary record Envc : Set (succ Zero) where field c10 : @$\mathbb{N}$@ varn : @$\mathbb{N}$@ vari : @$\mathbb{N}$@ open Envc whileTestP : {l : Level} {t : Set l} @$\rightarrow$@ (c10 : @$\mathbb{N}$@) @$\rightarrow$@ (Code : Envc @$\rightarrow$@ t) @$\rightarrow$@ t whileTestP c10 next = next (record {varn = c10 ; vari = 0 ; c10 = c10 } ) whileLoopP : {l : Level} {t : Set l} @$\rightarrow$@ Envc @$\rightarrow$@ (next : Envc @$\rightarrow$@ t) @$\rightarrow$@ (exit : Envc @$\rightarrow$@ t) @$\rightarrow$@ t whileLoopP env next exit with <-cmp 0 (varn env) whileLoopP env next exit | tri@$\thickapprox$@ @$\neg$@a b @$\neg$@c = exit env whileLoopP env next exit | tri< a @$\neg$@b @$\neg$@c = next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) -- equivalent of whileLoopP but it looks like an induction on varn whileLoopP' : {l : Level} {t : Set l} @$\rightarrow$@ (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc) @$\rightarrow$@ (n @$\equiv$@ varn env) @$\rightarrow$@ (next : Envc @$\rightarrow$@ t) @$\rightarrow$@ (exit : Envc @$\rightarrow$@ t) @$\rightarrow$@ t whileLoopP' zero env refl _ exit = exit env whileLoopP' (suc n) env refl next _ = next (record {c10 = (c10 env) ; varn = varn env ; vari = suc (vari env) }) -- normal loop without termination {-@$\#$@ TERMINATING @$\#$@-} loopP : {l : Level} {t : Set l} @$\rightarrow$@ Envc @$\rightarrow$@ (exit : Envc @$\rightarrow$@ t) @$\rightarrow$@ t loopP env exit = whileLoopP env (@$\lambda$@ env @$\rightarrow$@ loopP env exit ) exit whileTestPCall : (c10 : @$\mathbb{N}$@ ) @$\rightarrow$@ Envc whileTestPCall c10 = whileTestP {_} {_} c10 (@$\lambda$@ env @$\rightarrow$@ loopP env (@$\lambda$@ env @$\rightarrow$@ env)) -- -- codeGears with states of condition -- data whileTestState : Set where s1 : whileTestState s2 : whileTestState sf : whileTestState whileTestStateP : whileTestState @$\rightarrow$@ Envc @$\rightarrow$@ Set whileTestStateP s1 env = (vari env @$\equiv$@ 0) @$\wedge$@ (varn env @$\equiv$@ c10 env) whileTestStateP s2 env = (varn env + vari env @$\equiv$@ c10 env) whileTestStateP sf env = (vari env @$\equiv$@ c10 env) whileTestPwP : {l : Level} {t : Set l} @$\rightarrow$@ (c10 : @$\mathbb{N}$@) @$\rightarrow$@ ((env : Envc ) @$\rightarrow$@ whileTestStateP s1 env @$\rightarrow$@ t) @$\rightarrow$@ t whileTestPwP c10 next = next env record { pi1 = refl ; pi2 = refl } where env : Envc env = whileTestP c10 ( @$\lambda$@ env @$\rightarrow$@ env ) whileLoopPwP : {l : Level} {t : Set l} @$\rightarrow$@ (env : Envc ) @$\rightarrow$@ whileTestStateP s2 env @$\rightarrow$@ (next : (env : Envc ) @$\rightarrow$@ whileTestStateP s2 env @$\rightarrow$@ t) @$\rightarrow$@ (exit : (env : Envc ) @$\rightarrow$@ whileTestStateP sf env @$\rightarrow$@ t) @$\rightarrow$@ t whileLoopPwP env s next exit with <-cmp 0 (varn env) whileLoopPwP env s next exit | tri@$\thickapprox$@ @$\neg$@a b @$\neg$@c = exit env (lem (sym b) s) where lem : (varn env @$\equiv$@ 0) @$\rightarrow$@ (varn env + vari env @$\equiv$@ c10 env) @$\rightarrow$@ vari env @$\equiv$@ c10 env lem refl refl = refl whileLoopPwP env s next exit | tri< a @$\neg$@b @$\neg$@c = next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) (proof5 a) where 1<0 : 1 @$\leq$@ zero @$\rightarrow$@ @$\bot$@ 1<0 () proof5 : (suc zero @$\leq$@ (varn env)) @$\rightarrow$@ (varn env - 1) + (vari env + 1) @$\equiv$@ c10 env proof5 (s@$\leq$@s lt) with varn env proof5 (s@$\leq$@s z@$\leq$@n) | zero = @$\bot$@-elim (1<0 a) proof5 (s@$\leq$@s (z@$\leq$@n {n'}) ) | suc n = let open @$\equiv$@-Reasoning in begin n' + (vari env + 1) @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ n' + z ) ( +-sym {vari env} {1} ) @$\rangle$@ n' + (1 + vari env ) @$\equiv$@@$\langle$@ sym ( +-assoc (n') 1 (vari env) ) @$\rangle$@ (n' + 1) + vari env @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ z + vari env ) +1@$\equiv$@suc @$\rangle$@ (suc n' ) + vari env @$\equiv$@@$\langle$@@$\rangle$@ varn env + vari env @$\equiv$@@$\langle$@ s @$\rangle$@ c10 env @$\blacksquare$@ whileLoopPwP' : {l : Level} {t : Set l} @$\rightarrow$@ (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc ) @$\rightarrow$@ (n @$\equiv$@ varn env) @$\rightarrow$@ whileTestStateP s2 env @$\rightarrow$@ (next : (env : Envc ) @$\rightarrow$@ (pred n @$\equiv$@ varn env) @$\rightarrow$@ whileTestStateP s2 env @$\rightarrow$@ t) @$\rightarrow$@ (exit : (env : Envc ) @$\rightarrow$@ whileTestStateP sf env @$\rightarrow$@ t) @$\rightarrow$@ t whileLoopPwP' zero env refl refl next exit = exit env refl whileLoopPwP' (suc n) env refl refl next exit = next (record env {varn = pred (varn env) ; vari = suc (vari env) }) refl (+-suc n (vari env)) {-@$\#$@ TERMINATING @$\#$@-} loopPwP : {l : Level} {t : Set l} @$\rightarrow$@ (env : Envc ) @$\rightarrow$@ whileTestStateP s2 env @$\rightarrow$@ (exit : (env : Envc ) @$\rightarrow$@ whileTestStateP sf env @$\rightarrow$@ t) @$\rightarrow$@ t loopPwP env s exit = whileLoopPwP env s (@$\lambda$@ env s @$\rightarrow$@ loopPwP env s exit ) exit loopPwP' : {l : Level} {t : Set l} @$\rightarrow$@ (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc ) @$\rightarrow$@ (n @$\equiv$@ varn env) @$\rightarrow$@ whileTestStateP s2 env @$\rightarrow$@ (exit : (env : Envc ) @$\rightarrow$@ whileTestStateP sf env @$\rightarrow$@ t) @$\rightarrow$@ t loopPwP' zero env refl refl exit = exit env refl loopPwP' (suc n) env refl refl exit = whileLoopPwP' (suc n) env refl refl (@$\lambda$@ env x y @$\rightarrow$@ loopPwP' n env x y exit) exit loopHelper : (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc ) @$\rightarrow$@ (eq : varn env @$\equiv$@ n) @$\rightarrow$@ (seq : whileTestStateP s2 env) @$\rightarrow$@ loopPwP' n env (sym eq) seq @$\lambda$@ env@$\_{1}$@ x @$\rightarrow$@ (vari env@$\_{1}$@ @$\equiv$@ c10 env@$\_{1}$@) loopHelper zero env eq refl rewrite eq = refl loopHelper (suc n) env eq refl rewrite eq = loopHelper n (record { c10 = suc (n + vari env) ; varn = n ; vari = suc (vari env) }) refl (+-suc n (vari env)) -- all codtions are correctly connected and required condtion is proved in the continuation -- use required condition as t in (env @$\rightarrow$@ t) @$\rightarrow$@ t -- whileTestPCallwP : (c : @$\mathbb{N}$@ ) @$\rightarrow$@ Set whileTestPCallwP c = whileTestPwP {_} {_} c ( @$\lambda$@ env s @$\rightarrow$@ loopPwP env (conv env s) ( @$\lambda$@ env s @$\rightarrow$@ vari env @$\equiv$@ c10 env ) ) where conv : (env : Envc ) @$\rightarrow$@ (vari env @$\equiv$@ 0) @$\wedge$@ (varn env @$\equiv$@ c10 env) @$\rightarrow$@ varn env + vari env @$\equiv$@ c10 env conv e record { pi1 = refl ; pi2 = refl } = +zero whileTestPCallwP' : (c : @$\mathbb{N}$@ ) @$\rightarrow$@ Set whileTestPCallwP' c = whileTestPwP {_} {_} c (@$\lambda$@ env s @$\rightarrow$@ loopPwP' (varn env) env refl (conv env s) ( @$\lambda$@ env s @$\rightarrow$@ vari env @$\equiv$@ c10 env ) ) where conv : (env : Envc ) @$\rightarrow$@ (vari env @$\equiv$@ 0) @$\wedge$@ (varn env @$\equiv$@ c10 env) @$\rightarrow$@ varn env + vari env @$\equiv$@ c10 env conv e record { pi1 = refl ; pi2 = refl } = +zero helperCallwP : (c : @$\mathbb{N}$@) @$\rightarrow$@ whileTestPCallwP' c helperCallwP c = whileTestPwP {_} {_} c (@$\lambda$@ env s @$\rightarrow$@ loopHelper c (record { c10 = c ; varn = c ; vari = zero }) refl +zero) -- -- Using imply relation to make soundness explicit -- termination is shown by induction on varn -- data _implies_ (A B : Set ) : Set (succ Zero) where proof : ( A @$\rightarrow$@ B ) @$\rightarrow$@ A implies B whileTestPSem : (c : @$\mathbb{N}$@) @$\rightarrow$@ whileTestP c ( @$\lambda$@ env @$\rightarrow$@ @$\top$@ implies (whileTestStateP s1 env) ) whileTestPSem c = proof ( @$\lambda$@ _ @$\rightarrow$@ record { pi1 = refl ; pi2 = refl } ) whileTestPSemSound : (c : @$\mathbb{N}$@ ) (output : Envc ) @$\rightarrow$@ output @$\equiv$@ whileTestP c (@$\lambda$@ e @$\rightarrow$@ e) @$\rightarrow$@ @$\top$@ implies ((vari output @$\equiv$@ 0) @$\wedge$@ (varn output @$\equiv$@ c)) whileTestPSemSound c output refl = whileTestPSem c whileConvPSemSound : {l : Level} @$\rightarrow$@ (input : Envc) @$\rightarrow$@ (whileTestStateP s1 input ) implies (whileTestStateP s2 input) whileConvPSemSound input = proof @$\lambda$@ x @$\rightarrow$@ (conv input x) where conv : (env : Envc ) @$\rightarrow$@ (vari env @$\equiv$@ 0) @$\wedge$@ (varn env @$\equiv$@ c10 env) @$\rightarrow$@ varn env + vari env @$\equiv$@ c10 env conv e record { pi1 = refl ; pi2 = refl } = +zero loopPP : (n : @$\mathbb{N}$@) @$\rightarrow$@ (input : Envc ) @$\rightarrow$@ (n @$\equiv$@ varn input) @$\rightarrow$@ Envc loopPP zero input refl = input loopPP (suc n) input refl = loopPP n (record input { varn = pred (varn input) ; vari = suc (vari input)}) refl whileLoopPSem : {l : Level} {t : Set l} @$\rightarrow$@ (input : Envc ) @$\rightarrow$@ whileTestStateP s2 input @$\rightarrow$@ (next : (output : Envc ) @$\rightarrow$@ (whileTestStateP s2 input ) implies (whileTestStateP s2 output) @$\rightarrow$@ t) @$\rightarrow$@ (exit : (output : Envc ) @$\rightarrow$@ (whileTestStateP s2 input ) implies (whileTestStateP sf output) @$\rightarrow$@ t) @$\rightarrow$@ t whileLoopPSem env s next exit with varn env | s ... | zero | _ = exit env (proof (@$\lambda$@ z @$\rightarrow$@ z)) ... | (suc varn ) | refl = next ( record env { varn = varn ; vari = suc (vari env) } ) (proof @$\lambda$@ x @$\rightarrow$@ +-suc varn (vari env) ) loopPPSem : (input output : Envc ) @$\rightarrow$@ output @$\equiv$@ loopPP (varn input) input refl @$\rightarrow$@ (whileTestStateP s2 input ) @$\rightarrow$@ (whileTestStateP s2 input ) implies (whileTestStateP sf output) loopPPSem input output refl s2p = loopPPSemInduct (varn input) input refl refl s2p where lem : (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc) @$\rightarrow$@ n + suc (vari env) @$\equiv$@ suc (n + vari env) lem n env = +-suc (n) (vari env) loopPPSemInduct : (n : @$\mathbb{N}$@) @$\rightarrow$@ (current : Envc) @$\rightarrow$@ (eq : n @$\equiv$@ varn current) @$\rightarrow$@ (loopeq : output @$\equiv$@ loopPP n current eq) @$\rightarrow$@ (whileTestStateP s2 current ) @$\rightarrow$@ (whileTestStateP s2 current ) implies (whileTestStateP sf output) loopPPSemInduct zero current refl loopeq refl rewrite loopeq = proof (@$\lambda$@ x @$\rightarrow$@ refl) loopPPSemInduct (suc n) current refl loopeq refl rewrite (sym (lem n current)) = whileLoopPSem current refl (@$\lambda$@ output x @$\rightarrow$@ loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) (@$\lambda$@ output x @$\rightarrow$@ loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) whileLoopPSemSound : {l : Level} @$\rightarrow$@ (input output : Envc ) @$\rightarrow$@ whileTestStateP s2 input @$\rightarrow$@ output @$\equiv$@ loopPP (varn input) input refl @$\rightarrow$@ (whileTestStateP s2 input ) implies ( whileTestStateP sf output ) whileLoopPSemSound {l} input output pre eq = loopPPSem input output eq pre