module agda-term where open import Data.Nat.Base open import Relation.Binary.PropositionalEquality +zero : {y : @$\mathbb{N}$@} @$\rightarrow$@ y + zero @$\equiv$@ y +zero {zero} = refl +zero {suc y} = cong (@$\lambda$@ yy @$\rightarrow$@ suc yy) (+zero {y}) +-suc : {x y : @$\mathbb{N}$@} @$\rightarrow$@ x + suc y @$\equiv$@ suc (x + y) +-suc {zero} {y} = refl +-suc {suc x} {y} = cong suc (+-suc {x} {y}) +-comm : (x y : @$\mathbb{N}$@) @$\rightarrow$@ x + y @$\equiv$@ y + x +-comm zero y rewrite (+zero {y}) = refl +-comm (suc x) y = let open @$\equiv$@-Reasoning in begin suc (x + y) @$\equiv$@@$\langle$@@$\rangle$@ suc (x + y) @$\equiv$@@$\langle$@ cong suc (+-comm x y) @$\rangle$@ suc (y + x) @$\equiv$@@$\langle$@ sym (+-suc {y} {x}) @$\rangle$@ y + suc x @$\blacksquare$@ +-come : (x y : @$\mathbb{N}$@) @$\rightarrow$@ x + y @$\equiv$@ y + x +-come zero y rewrite (+zero {y}) = refl +-come (suc x) y rewrite (cong suc (+-come x y)) | sym (+-suc {y} {x}) = refl