whileTest : {l : Level} {t : Set l} @$\rightarrow$@ {c10 : @$\mathbb{N}$@ } @$\rightarrow$@ (Code : (env : Env) @$\rightarrow$@ ((vari env) @$\equiv$@ 0) @$\wedge$@ ((varn env) @$\equiv$@ c10) @$\rightarrow$@ t) @$\rightarrow$@ t whileTest {_} {_} {c10} next = next env proof2 where env : Env env = record {vari = 0 ; varn = c10} proof2 : ((vari env) @$\equiv$@ 0) @$\wedge$@ ((varn env) @$\equiv$@ c10) proof2 = record {pi1 = refl ; pi2 = refl} conversion1 : {l : Level} {t : Set l } @$\rightarrow$@ (env : Env) @$\rightarrow$@ {c10 : @$\mathbb{N}$@ } @$\rightarrow$@ ((vari env) @$\equiv$@ 0) @$\wedge$@ ((varn env) @$\equiv$@ c10) @$\rightarrow$@ (Code : (env1 : Env) @$\rightarrow$@ (varn env1 + vari env1 @$\equiv$@ c10) @$\rightarrow$@ t) @$\rightarrow$@ t conversion1 env {c10} p1 next = next env proof4 where proof4 : varn env + vari env @$\equiv$@ c10 proof4 = let open @$\equiv$@-Reasoning in begin varn env + vari env @$\equiv$@@$\langle$@ cong ( @$\lambda$@ n @$\rightarrow$@ n + vari env ) (pi2 p1 ) @$\rangle$@ c10 + vari env @$\equiv$@@$\langle$@ cong ( @$\lambda$@ n @$\rightarrow$@ c10 + n ) (pi1 p1 ) @$\rangle$@ c10 + 0 @$\equiv$@@$\langle$@ +-sym {c10} {0} @$\rangle$@ c10 @$\blacksquare$@ {-@$\#$@ TERMINATING @$\#$@-} whileLoop : {l : Level} {t : Set l} @$\rightarrow$@ (env : Env) @$\rightarrow$@ {c10 : @$\mathbb{N}$@ } @$\rightarrow$@ ((varn env) + (vari env) @$\equiv$@ c10) @$\rightarrow$@ (Code : Env @$\rightarrow$@ t) @$\rightarrow$@ t whileLoop env proof next with ( suc zero @$\leq$@? (varn env) ) whileLoop env proof next | no p = next env whileLoop env {c10} proof next | yes p = whileLoop env1 (proof3 p ) next where env1 = record {varn = (varn env) - 1 ; vari = (vari env) + 1} 1<0 : 1 @$\leq$@ zero @$\rightarrow$@ @$\bot$@ 1<0 () proof3 : (suc zero @$\leq$@ (varn env)) @$\rightarrow$@ varn env1 + vari env1 @$\equiv$@ c10 proof3 (s@$\leq$@s lt) with varn env proof3 (s@$\leq$@s z@$\leq$@n) | zero = @$\bot$@-elim (1<0 p) proof3 (s@$\leq$@s (z@$\leq$@n {n'}) ) | suc n = let open @$\equiv$@-Reasoning in begin n' + (vari env + 1) @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ n' + z ) ( +-sym {vari env} {1} ) @$\rangle$@ n' + (1 + vari env ) @$\equiv$@@$\langle$@ sym ( +-assoc (n') 1 (vari env) ) @$\rangle$@ (n' + 1) + vari env @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ z + vari env ) +1@$\equiv$@suc @$\rangle$@ (suc n' ) + vari env @$\equiv$@@$\langle$@@$\rangle$@ varn env + vari env @$\equiv$@@$\langle$@ proof @$\rangle$@ c10 @$\blacksquare$@