
0

Trampoline

Unused

Unused

UnusedKstack 0

Guard page

Kstack 1

Guard page

0x1000

0

R-X

Virtual Addresses

CLINT

Kernel text

boot ROM

 

Physical Addresses
2^56-1

 

Unused 
and other I/O devices

 

0x02000000

0x0C000000 PLIC

UART0
VIRTIO disk

0x10000000
0x10001000

KERNBASE 
(0x80000000)

PHYSTOP 
(0x86400000)

MAXVA

Kernel data

R-X

RW-

Physical memory (RAM)

VIRTIO disk
UART0

CLINT

PLIC

RW-
RW-

RW-

RW-

Free memory
RW-

...
---

---

RW-

RW-

Figure 3.3: On the left, xv6’s kernel address space. RWX refer to PTE read, write, and execute
permissions. On the right, the RISC-V physical address space that xv6 expects to see.

we see here an interesting use case of page tables; a physical page (holding the trampoline
code) is mapped twice in the virtual address space of the kernel: once at top of the virtual
address space and once in the kernel text.

• The kernel stack pages. Each process has its own kernel stack, which is mapped high so
that below it xv6 can leave an unmapped guard page. The guard page’s PTE is invalid (i.e.,
PTE_V is not set), which ensures that if the kernel overflows a kernel stack, it will likely
cause a fault and the kernel will panic. Without a guard page an overflowing stack would
overwrite other kernel memory, resulting in incorrect operation. A panic crash is preferable.

While the kernel uses its stacks via the high-memory mappings, they are also accessible to the
kernel through a direct-mapped address. An alternate design might have just the direct mapping,

32


