comparison Paper/src/agda/syllogism.agda.replaced @ 5:339fb67b4375

INIT rbt.agda
author soto <soto@cr.ie.u-ryukyu.ac.jp>
date Sun, 07 Nov 2021 00:51:16 +0900
parents 9176dff8f38a
children
comparison
equal deleted inserted replaced
4:72667e8198e2 5:339fb67b4375
1 syllogism : {A B C : Set} @$\rightarrow$@ ((A @$\rightarrow$@ B) @$\wedge$@ (B @$\rightarrow$@ C)) @$\rightarrow$@ (A @$\rightarrow$@ C) 1 syllogism : {A B C : Set} !$\rightarrow$! ((A !$\rightarrow$! B) !$\wedge$! (B !$\rightarrow$! C)) !$\rightarrow$! (A !$\rightarrow$! C)
2 syllogism x a = _@$\wedge$@_.p2 x (_@$\wedge$@_.p1 x a) 2 syllogism x a = _!$\wedge$!_.p2 x (_!$\wedge$!_.p1 x a)