Mercurial > hg > Papers > 2021 > soto-prosym
comparison Paper/src/stack-product.agda.replaced @ 0:c59202657321
init
author | soto <soto@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 02 Nov 2021 06:55:58 +0900 (2021-11-01) |
parents | |
children | 339fb67b4375 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:c59202657321 |
---|---|
1 module stack-product where | |
2 | |
3 open import product | |
4 open import Data.Product | |
5 open import Data.Nat | |
6 open import Function using (id) | |
7 open import Relation.Binary.PropositionalEquality | |
8 | |
9 -- definition based from Gears(209:5708390a9d88) src/parallel_execution | |
10 goto = executeCS | |
11 | |
12 data Bool : Set where | |
13 True : Bool | |
14 False : Bool | |
15 | |
16 data Maybe (a : Set) : Set where | |
17 Nothing : Maybe a | |
18 Just : a @$\rightarrow$@ Maybe a | |
19 | |
20 | |
21 record Stack {a t : Set} (stackImpl : Set) : Set where | |
22 field | |
23 stack : stackImpl | |
24 push : CodeSegment (stackImpl @$\times$@ a @$\times$@ (CodeSegment stackImpl t)) t | |
25 pop : CodeSegment (stackImpl @$\times$@ (CodeSegment (stackImpl @$\times$@ Maybe a) t)) t | |
26 | |
27 | |
28 data Element (a : Set) : Set where | |
29 cons : a @$\rightarrow$@ Maybe (Element a) @$\rightarrow$@ Element a | |
30 | |
31 datum : {a : Set} @$\rightarrow$@ Element a @$\rightarrow$@ a | |
32 datum (cons a _) = a | |
33 | |
34 next : {a : Set} @$\rightarrow$@ Element a @$\rightarrow$@ Maybe (Element a) | |
35 next (cons _ n) = n | |
36 | |
37 record SingleLinkedStack (a : Set) : Set where | |
38 field | |
39 top : Maybe (Element a) | |
40 open SingleLinkedStack | |
41 | |
42 emptySingleLinkedStack : {a : Set} @$\rightarrow$@ SingleLinkedStack a | |
43 emptySingleLinkedStack = record {top = Nothing} | |
44 | |
45 | |
46 | |
47 | |
48 pushSingleLinkedStack : {a t : Set} @$\rightarrow$@ CodeSegment ((SingleLinkedStack a) @$\times$@ a @$\times$@ (CodeSegment (SingleLinkedStack a) t)) t | |
49 pushSingleLinkedStack = cs push | |
50 where | |
51 push : {a t : Set} @$\rightarrow$@ ((SingleLinkedStack a) @$\times$@ a @$\times$@ (CodeSegment (SingleLinkedStack a) t)) @$\rightarrow$@ t | |
52 push (stack , datum , next) = goto next stack1 | |
53 where | |
54 element = cons datum (top stack) | |
55 stack1 = record {top = Just element} | |
56 | |
57 popSingleLinkedStack : {a t : Set} @$\rightarrow$@ CodeSegment (SingleLinkedStack a @$\times$@ (CodeSegment (SingleLinkedStack a @$\times$@ Maybe a) t)) t | |
58 popSingleLinkedStack = cs pop | |
59 where | |
60 pop : {a t : Set} @$\rightarrow$@ (SingleLinkedStack a @$\times$@ (CodeSegment (SingleLinkedStack a @$\times$@ Maybe a) t)) @$\rightarrow$@ t | |
61 pop (record { top = Nothing } , nextCS) = goto nextCS (emptySingleLinkedStack , Nothing) | |
62 pop (record { top = Just x } , nextCS) = goto nextCS (stack1 , (Just datum1)) | |
63 where | |
64 datum1 = datum x | |
65 stack1 = record { top = (next x) } | |
66 | |
67 | |
68 | |
69 | |
70 | |
71 createSingleLinkedStack : {a b : Set} @$\rightarrow$@ Stack {a} {b} (SingleLinkedStack a) | |
72 createSingleLinkedStack = record { stack = emptySingleLinkedStack | |
73 ; push = pushSingleLinkedStack | |
74 ; pop = popSingleLinkedStack | |
75 } | |
76 | |
77 | |
78 | |
79 | |
80 test01 : {a : Set} @$\rightarrow$@ CodeSegment (SingleLinkedStack a @$\times$@ Maybe a) Bool | |
81 test01 = cs test01' | |
82 where | |
83 test01' : {a : Set} @$\rightarrow$@ (SingleLinkedStack a @$\times$@ Maybe a) @$\rightarrow$@ Bool | |
84 test01' (record { top = Nothing } , _) = False | |
85 test01' (record { top = Just x } , _) = True | |
86 | |
87 | |
88 test02 : {a : Set} @$\rightarrow$@ CodeSegment (SingleLinkedStack a) (SingleLinkedStack a @$\times$@ Maybe a) | |
89 test02 = cs test02' | |
90 where | |
91 test02' : {a : Set} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ (SingleLinkedStack a @$\times$@ Maybe a) | |
92 test02' stack = goto popSingleLinkedStack (stack , (cs id)) | |
93 | |
94 | |
95 test03 : {a : Set} @$\rightarrow$@ CodeSegment a (SingleLinkedStack a) | |
96 test03 = cs test03' | |
97 where | |
98 test03' : {a : Set} @$\rightarrow$@ a @$\rightarrow$@ SingleLinkedStack a | |
99 test03' a = goto pushSingleLinkedStack (emptySingleLinkedStack , a , (cs id)) | |
100 | |
101 | |
102 lemma : {A : Set} {a : A} @$\rightarrow$@ goto (test03 ◎ test02 ◎ test01) a @$\equiv$@ False | |
103 lemma = refl | |
104 | |
105 | |
106 n-push : {A : Set} {a : A} @$\rightarrow$@ CodeSegment (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) | |
107 n-push {A} {a} = cs (push {A} {a}) | |
108 where | |
109 push : {A : Set} {a : A} @$\rightarrow$@ (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) @$\rightarrow$@ (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) | |
110 push {A} {a} (zero , s) = (zero , s) | |
111 push {A} {a} (suc n , s) = goto pushSingleLinkedStack (s , a , {!!} {- n-push -}) -- needs subtype | |
112 | |
113 | |
114 {- | |
115 | |
116 n-push : {A : Set} {a : A} @$\rightarrow$@ Nat @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A | |
117 n-push zero s = s | |
118 n-push {A} {a} (suc n) s = pushSingleLinkedStack (n-push {A} {a} n s) a (\s @$\rightarrow$@ s) | |
119 | |
120 n-pop : {A : Set} {a : A} @$\rightarrow$@ Nat @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A | |
121 n-pop zero s = s | |
122 n-pop {A} {a} (suc n) s = popSingleLinkedStack (n-pop {A} {a} n s) (\s _ @$\rightarrow$@ s) | |
123 | |
124 open @$\equiv$@-Reasoning | |
125 | |
126 push-pop-equiv : {A : Set} {a : A} (s : SingleLinkedStack A) @$\rightarrow$@ popSingleLinkedStack (pushSingleLinkedStack s a (\s @$\rightarrow$@ s)) (\s _ @$\rightarrow$@ s) @$\equiv$@ s | |
127 push-pop-equiv s = refl | |
128 | |
129 push-and-n-pop : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) @$\rightarrow$@ n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id) @$\equiv$@ n-pop {A} {a} n s | |
130 push-and-n-pop zero s = refl | |
131 push-and-n-pop {A} {a} (suc n) s = begin | |
132 n-pop (suc (suc n)) (pushSingleLinkedStack s a id) | |
133 @$\equiv$@@$\langle$@ refl @$\rangle$@ | |
134 popSingleLinkedStack (n-pop (suc n) (pushSingleLinkedStack s a id)) (\s _ @$\rightarrow$@ s) | |
135 @$\equiv$@@$\langle$@ cong (\s @$\rightarrow$@ popSingleLinkedStack s (\s _ @$\rightarrow$@ s)) (push-and-n-pop n s) @$\rangle$@ | |
136 popSingleLinkedStack (n-pop n s) (\s _ @$\rightarrow$@ s) | |
137 @$\equiv$@@$\langle$@ refl @$\rangle$@ | |
138 n-pop (suc n) s | |
139 @$\blacksquare$@ | |
140 | |
141 | |
142 n-push-pop-equiv : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) @$\rightarrow$@ (n-pop {A} {a} n (n-push {A} {a} n s)) @$\equiv$@ s | |
143 n-push-pop-equiv zero s = refl | |
144 n-push-pop-equiv {A} {a} (suc n) s = begin | |
145 n-pop (suc n) (n-push (suc n) s) | |
146 @$\equiv$@@$\langle$@ refl @$\rangle$@ | |
147 n-pop (suc n) (pushSingleLinkedStack (n-push n s) a (\s @$\rightarrow$@ s)) | |
148 @$\equiv$@@$\langle$@ push-and-n-pop n (n-push n s) @$\rangle$@ | |
149 n-pop n (n-push n s) | |
150 @$\equiv$@@$\langle$@ n-push-pop-equiv n s @$\rangle$@ | |
151 s | |
152 @$\blacksquare$@ | |
153 | |
154 | |
155 n-push-pop-equiv-empty : {A : Set} {a : A} @$\rightarrow$@ (n : Nat) @$\rightarrow$@ n-pop {A} {a} n (n-push {A} {a} n emptySingleLinkedStack) @$\equiv$@ emptySingleLinkedStack | |
156 n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack | |
157 -} | |
158 |